

Smoothed Particle Hydrodynamics
Techniques for the Physics Based Simulation of Fluids and Solids

Part 4

Data-driven / ML Techniques

Dan
Koschier

Jan
Bender

Barbara
Solenthaler

Matthias
Teschner

Eurographics19 Tutorial - SPH

• Substantial	improvements	in	speed,	robustness,	versatility…

3

Motivation

Ihmsen et	al.	2013 Horvath	&	Solenthaler	2013

Incompressibility Multi-scale simulations

• Potential	of data-driven approaches?
– PhysicsForest:	Real-time	SPH	simulations
– Deep Learning	&	Fluids:	Related work and Outlook

• Computation	time
• Trial	&	error,	parameters
• Data	reuse
• Edit	&	control	simulations
• …

Eurographics19 Tutorial - SPH

Real-time	prediction	of	fluids	with	Regression	Forests	

4

Machine	Learning	based	Simulations

Ladicky et	al.	2015,	Apagom AG

Eurographics19 Tutorial - SPH 5

Physics	Forest

Current	State Next	StateSn	 Sn+1	

Regression	
Model

Training Simulation training data

Data	size:	
165	scenes	x	6s	x	30fps	x	1-6M	particles

Eurographics19 Tutorial - SPH 6

Physics	Forest

Current	State

Sn	

Next	State

Sn+1	

Test

Regression	
Model

1) Regression	method?
2) Input	and	output	of	regression?
3) Feature	vector?

Eurographics19 Tutorial - SPH 7

Physics	Forest

Current	State

Sn	

Next	State

Sn+1	

Test

Regression	
Model

1) Regression	method?
2) Input	and	output	of	regression?
3) Feature	vector?

Regression	
Forest

[Breiman 2001]

Eurographics19 Tutorial - SPH 8

Physics	Forest

Current	State

Sn	

Next	State

Sn+1	

Test

Regression	
Model

1) Regression	method?
2) Input	and	output	of	regression?
3) Feature	vector?

Regression	
Forest

[Breiman 2001]

Eurographics19 Tutorial - SPH 9

Learning	Strategies

Naïve	approach Feature	
Vector Regression Advection Collision	

Detection

Standard	Regression	Pipeline

Learn	accelerations
->	mimics	standard	SPH	(no	incompressibility)

Sn	 Sn+1	

Learn	velocity	or	acceleration?
Problem:	no	self-correction	possible

Eurographics19 Tutorial - SPH 10

Learning	Strategies

Correction	
approach

Feature	
Vector Regression Apply	

Correction

Correction	from	Advected States

Learn	velocity	corrections
->	mimics	PBD	(incompressibility)

Sn	

Sn+1	

AdvectionExternal
Forces

Collision	
Detection

Collision	
Detection

Learn	acceleration	corrections
->	mimics	PCISPH	(incompressibility)

Eurographics19 Tutorial - SPH 11

Feature	Vector

F

=	{	FR0 FR1 FR2 …	FRk}

Rk

Regression	
Forest

[Breiman 2001]

Integral	features:	
Flat-kernel	sums	of	rectangular	
regions	around	particle

• Regional	forces	and	constraints	
over	the	set	of	boxes

• Fast	evaluation
• Robust	to	small	input	deviations	
• Evaluation	in	constant	time	

(linear	in	number	of	particles)

1) Regression	method?
2) Input	and	output	of	regression?
3) Feature	vector?

Eurographics19 Tutorial - SPH

Figure 4: The obtained results using our regression forest method (rendered offline). Our learning approach managed to successfully
approximate a large state-space of a behaviour of fluid particles without any significant artifacts. Our method showed the potential to be
useful for an application where running time matters more than the physical exactness, such as in computer games or interactive design.

Figure 5: Comparison with PBF. Our method produced slightly different, but globally similar visually plausible results. Simulations usually
differ for any two different solvers or configurations of a particular solver.

Figure 6: Realtime interactive experiments with user interaction. The experiments showed that our method can be used in interactive realtime
frameworks for fluid simulations with up to 2 million particles. At the moment there are no other alternatives that provide comparably fast
visually pleasant stable solutions at such scales.

199:8 • L. Ladicky et al.

ACM Transactions on Graphics, Vol. 34, No. 6, Article 199, Publication Date: November 2015

• Data	size:	 165	scenes	x	6s	x	30fps	x	1-6M	particles
• Training:	 4	days	on	12	CPUs
• Size	of	trained	model:	40MB
• Only	use	most	discriminative	features	(pressure,	compressibility)

12

Training	Data	and	Performance

1-1.5M	particles	in	real-time

Ladicky et	al.	2015

Re
gF
lu
id

G
ro
un

d	
Tr
ut
h

Eurographics19 Tutorial - SPH 13

Varying	Material	Properties

Feature	
Vector Regression Apply	

Correction

Sn	

Sn+1	

AdvectionExternal
Forces

Collision	
Detection

Collision	
Detection

• Viscosity	
• Surface	Tension	
• Static	Friction	
• Adhesion
• Drag
• Vorticity	Confinement

Ladicky et	al.	2015

Eurographics19 Tutorial - SPH 14

Real-time	Simulations	with	PhysicsForests
Apagom AG

Eurographics19 Tutorial - SPH

• RegressionFluid:	fast,	but	hand-crafted	features
->	Deep	Learning	(DL)

• Using	DL	for	fluids	(physics)	is	largely	unexplored!

15

Related	Work

It is then tasked with reconstructing the full 3D state of the liquid at each point in time from this
observation. To make this task feasible, we assume that the initial state of the liquid is known and
that the robot has 3D models of and can track the 3D pose of the rigid objects in the scene. The
robot then uses SPNets to compute the updated liquid position at each point in time, and uses the
observation to correct the liquid state when the dynamics of the simulated and real liquid begin to
diverge. This is the same task we looked at in [21]. We describe the details of this method in the
appendix.

(a) RGB (b) SPNets (c) SPNets+Perception

Figure 5: Results when combining SPNets with perception.
The images in the top and bottom rows show 2 example frames.
From left-to-right: the RGB image (for reference), the RGB
image with SPNets overlayed (not using perception), and the
RGB image with SPNets with perception overlayed. In the
overlays, the blue color indicates ground truth liquid pixels,
green indicates the liquid particles, and yellow indicates where
they overlap.

We evaluated the robot on 12 pouring
sequences. Figure 5 shows 2 example
frames from 2 different sequences and
the result of both SPNets and SPNets
with perception. The yellow pixels in-
dicate where the model and ground truth
agree; the blue and green where they dis-
agree. From this it is apparent that SP-
Nets with perception is significantly bet-
ter at matching the real liquid state than
SPNets without perception. We eval-
uate the intersection-over-union (IOU)
across all frames of the 12 pouring se-
quences. SPNets alone (without percep-
tion) achieved an IOU of 36.1%. SP-
Nets with perception achieved an IOU
of 56.8%. These results clearly show
that perception is capable of greatly im-
proving performance even when there is
significant model mismatch. Here we
can see that SPNets with perception in-
creased performance by 20%, and from
the images in Figure 5 it is clear that
this increase in performance is signifi-
cant. This shows that our framework can
be very useful for combining real perceptual input with fluid dynamics.

6 Conclusion & Future Work

In this paper we presented SPNets, a method for computing differentiable fluid dynamics and their
interactions with rigid objects inside a deep network. To do this, we developed the ConvSP and
ConvSDF layers, which allow the model to compute particle-particle and particle-rigid object inter-
actions. We then showed how these layers can be combined with standard neural network layers to
compute fluid dynamics. Our evaluation in Section 5 showed how a fully differentiable fluid model
can be used to 1) learn, or identify, fluid parameters from data, 2) control liquids to accomplish a
task, 3) learn a policy to control liquids, and 4) be used in combination with perception to track
liquids. This is the power of model-based methods: they are widely applicable to a variety of tasks.
Combining this with the adaptability of deep networks, we can enable robots to robustly reason
about and manipulate liquids. Importantly, SPNets make it possible to specify liquid identification
and control tasks in terms of the desired state of the liquid; the resulting controls follow from the
physical interaction between the liquid and the controllable objects. This is in contrast to prior ap-
proaches to pouring liquids, for instance, where the relationships between controls and liquid states
have to be specified via manually designed functions.

We believe that by combining model-based methods with deep networks for liquids, SPNets pro-
vides a powerful new tool to the roboticist’s toolbox for enabling robots to handle liquids. A possible
next step for future work is to add a set of parameters to SPNets to facilitate learning a residual model
between the analytical fluid model and real observed fluids, or even to learn the dynamics of differ-
ent types of substances such as sand or flour. SPNets can also be used to perform more complex
manipulation tasks, such as mixing multiple liquid ingredients in a bowl, online identification and
prediction of liquid behavior, or using spoons to move liquids, fluids, or granular media between
containers.

8

Schenk	& Fox	2018 Wiewel et	al.	2019 Kim	et	al.	2019

Xie et	al.	2018 Kim	et	al.	2019

Talk	tomorrow	9:30Talk	tomorrow	10:00

Panel	discussion	CreativeAI
tomorrow	9:30

Eurographics19 Tutorial - SPH

• PBF	with	a	deep	neural	network
->	can	compute	full	analytical	gradients	(differentiable	solver)

• Two	new	layers:	ConvSP for	particle-particle	interactions
ConvSDF for	particle-object	interaction

• Robots	interacting	with	liquids	(learning	parameters,	control)

16

SPNets - Smoothed	Particle	Network	for	PBF

ApplyViscosity

PV

X +
ᵂt

ApplyForces

+
Gravity

X

ᵂt

SolveConstraints

SolvePressure SolveCohesion SolveSurfaceTension

+
SolveObjectCollisions

SolveConstraints

SolvePressure SolveCohesion SolveSurfaceTension

+
SolveObjectCollisions

SolveConstraints

SolvePressure SolveCohesion SolveSurfaceTension

+
SolveObjectCollisions

-
X 1

ᵂt

ConvSP
Positions Features

ConvSP
Positions Features

1

X

-
(ᵂt)(λv)
ρ0

X +

P’ V’

(a) SPNet

(b) Legend

(c) SolvePressure (d) SolveObjectCollisions

Figure 6: The layout for SPNet. The upper-left shows the overall layout of the network. The functions SOLVE-
PRESSURE, SOLVECOHESION, SOLVESURFACETENSION, and SOLVEOBJECTCOLLISIONS are collapsed for
readability. The lower-right shows the expansion of the SOLVEOBJECTCOLLISIONS function, with the line in
the top of the box being the input to the SOLVEOBJECTCOLLISIONS in the upper-left diagram and the line out
of the bottom of the box being the line out of the box. The lower-left shows the expansion of the SOLVEPRES-
SURE function. For clarity, the input line (which represents the particle positions) is colored green and the line
representing the particle pressures is colored pink.

12

Schenk	& Fox	2018

Eurographics19 Tutorial - SPH 17

Latent	Space	Physics	– Learning	Temporal	Evolution

• LSTM	network to	predict	changes	of	pressure	field	over	time	(3D	+	time)	within	the	
latent	space

• Uses	a	history	of	6	steps	to	infer	next	[1…x]	steps,	followed	by		a	regular	sim	step
• 155x	speed-up

Wiewel et	al.	2019
Talk	tomorrow	10:00

Eurographics19 Tutorial - SPH 18

paper1031 / Deep Fluids: A Generative Network for Parameterized Fluid Simulations 5

To extend our approach to these challenging scenarios, we add
an encoder architecture G†(u) : RH⇥W⇥D⇥Vdim 7! Rn to our gen-
erator of Section 3, and combine it with a second smaller network
for time integration (Section 4.1), as illustrated in Figure 5. In con-
trast to our generative network, the encoder architecture maps ve-
locity field frames into a parameterization c = [z,p] 2Rn, in which
z 2 Rn�k is a reduced latent space that models arbitrary features
of the flow in an unsupervised way and p 2 Rk is a supervised pa-
rameterization to control specific attributes [KWKT15]. Note that
this separation makes the latent space sparser while training, which
in turn improves the quality of the reconstruction. For the moving
smoke source example in Section 5.2, n = 16 and p encodes x,z
positions used to control the position of the smoke source.

The combined encoder and generative networks are similar to
Deep Convolutional autoencoders [VLL⇤10], where the generative
network G(c) acts as a decoder. The encoding architecture is sym-
metric to our generative model, except that we do not employ the
inverse of the curl operator and the last convolutional layer. We
train both generative and encoding networks with a combined loss
similar to Equation (3), as

LAE(u) = lu||uc� ûc||1+lru||ruc�rûc||1+lp||p� p̂||22, (4)

where p̂ is the part of the latent space vector constrained to rep-
resent control parameters p, and lp is a weight to emphasize the
learning of supervised parameters. As before, we used lu = lru =
lp = 1 for all our normalized examples (Section 6.1). With this
approach we can handle complex parameterizations, since the ve-
locity field states are represented by the remaining latent space di-
mensions in z. This allows us to use latent spaces which do not
explicitly encode the time dimension as a parameter. Instead, we
can use a second latent space integration network that generates a
suitable sequence of latent codes.

4.1. Latent Space Integration Network

The latent space only learns a diffuse representation of time by the
velocity field states z. Thus we propose a latent space integration
network for advancing time from reduced representations. The net-
work T (xt) : Rn+k 7! Rn�k takes an input vector xt = [ct ;Dpt] 2
Rn+k which is a concatenation of a latent code ct at current time
t and a control vector difference between user input parameters
Dpt = pt+1�pt 2Rk. The parameter Dpt has the same dimension-
ality k as the supervised part of our latent space, and serves as a
transition guidance from latent code ct to ct+1. The output of T (xt)
is the residual Dzt between two consecutive states. Thus, a new la-
tent code is computed with zt+1 = zt +T (xt) as seen in Figure 5.

For improved accuracy we let T look ahead in time, by training
the network on a window of w sequential latent codes with an L2
loss function:

LT (xt , ...,xt+w�1) =
1
w

t+w�1

Â
i=t

||Dzi�Ti||22, (5)

where Ti is recursively computed from t to i. Our window
loss Equation (5) is designed to minimize not only errors on the
next single step integration but also errors accumulated in repeated
latent space updates. We found that w = 30 yields good results, and

a discussion of the effects of different values of w is provided in the
supplemental material.

We realize T as a multilayer perceptron (MLP) network. The
network consists of three fully connected layers coupled with ELU
activation functions. We employ batch normalization and dropout
layers with probability of 0.1 to avoid overfitting. Once the net-
works G,G† and T are trained, we use Algorithm 1 to reconstruct
the velocity field for a new simulation. The algorithm starts from an
initial reduced space that can be computed from an initial incom-
pressible velocity field. The main loop consists of concatenating
the reduced space and the position update into xt ; then the latent
space integration network computes Dzt , which is used to update ct
to ct+1. Finally, the generative network G reconstructs the velocity
field ut+1 by evaluating ct+1.

Algorithm 1 Simulation with the Latent Space Integration Network

c0 G†(u0)
while simulating from t to t +1 do

xt [ct ;Dpt] // ct from previous step, p is given
zt+1 zt +T (xt) // latent code inference
ct+1 [zt+1;pt+1]
ut+1 G(ct+1) // velocity field reconstruction

end while

𝒖

𝐜G†(𝐮) G(𝒄)

ෝ𝒖𝒄
𝐜 = 𝐳 𝒑

Unsupervised Supervised

Figure 5: Autoencoder (top) and latent space integration network
(bottom). The autoencoder compresses a velocity field u into a la-
tent space representation c, which includes a supervised and unsu-
pervised part (p and z). The latent space integration network finds
mappings from subsequent latent code representations ct and ct+1.

5. Results

In the following we demonstrate that our Deep Fluids CNN can re-
liably recover and synthesize dynamic flow fields for both smoke
and liquids. We refer the reader to the supplemental video for the
corresponding animations. For each scene, we reconstruct velocity
fields computed by the generative network and advect densities for
smoke simulations or surfaces for liquids. Vorticity confinement or
turbulence synthesis were not applied after the network’s recon-
struction, but such methods could be added as a post-processing
step. We trained our networks using the Adam optimizer [KB14]

submitted to EUROGRAPHICS 2019.

E

G

DeepFluids:	Generative	Net	for	Parameterized	Simulation

EUROGRAPHICS 2019 / P. Alliez and F. Pellacini
(Guest Editors)

Volume 38 (2019), Number 2

Deep Fluids: A Generative Network for Parameterized Fluid
Simulations

paper1031

Simulation Data

Figure 1: Our generative neural network synthesizes fluid velocities continuously in space and time, using a set of input simulations for train-
ing and a few parameters for generation. This enables fast reconstruction of velocities, continuous interpolation and latent space simulations.

Abstract
This paper presents a novel generative model to synthesize fluid simulations from a set of reduced parameters. A convolutional
neural network is trained on a collection of discrete, parameterizable fluid simulation velocity fields. Due to the capability of
deep learning architectures to learn representative features of the data, our generative model is able to accurately approximate
the training data set, while providing plausible interpolated in-betweens. The proposed generative model is optimized for fluids
by a novel loss function that guarantees divergence-free velocity fields at all times. In addition, we demonstrate that we can
handle complex parameterizations in reduced spaces, and advance simulations in time by integrating in the latent space with
a second network. Our method models a wide variety of fluid behaviors, thus enabling applications such as fast construction
of simulations, interpolation of fluids with different parameters, time re-sampling, latent space simulations, and compression
of fluid simulation data. Reconstructed velocity fields are generated up to 700⇥ faster than re-simulating the data with the
underlying CPU solver, while achieving compression rates of up to 1300⇥.
CCS Concepts
• Computing methodologies ! Physical simulation; Neural networks;

1. Introduction

Accordingly, they have been adopted for many applications in
graphics, such as generating terrains [GDG⇤17], high-resolution
faces synthesis [KALL17] and cloud rendering [KMM⇤17]. In
fluid simulation, machine learning techniques have been used
to replace [LJS⇤15], speed up [TSSP17] or enhance existing
solvers [XFCT18].

Given the amount of available fluid simulation data, data-
driven approaches have emerged as attractive solutions. Subspace
solvers [TLP06], fluid re-simulators [KD13] and basis compres-

sors [JSK16] are examples of recent efforts in this direction. How-
ever, these methods usually represent fluids using linear basis func-
tions, e.g., constructed via Singular Value Decomposition (SVD),
which are less efficient than their non-linear counterparts. In this
sense, deep generative models implemented by convolutional neu-
ral networks (CNNs) show promise for representing data in reduced
dimensions due to their capability to tailor non-linear functions to
input data.

In this paper, we propose the first generative neural network - the
Deep Fluids network [ano18]- that fully constructs dynamic Eule-

submitted to EUROGRAPHICS 2019.

EUROGRAPHICS 2019 / P. Alliez and F. Pellacini
(Guest Editors)

Volume 38 (2019), Number 2

Deep Fluids: A Generative Network for Parameterized Fluid
Simulations

paper1031

Input Parameters
source position

inflow speed
…

time

Figure 1: Our generative neural network synthesizes fluid velocities continuously in space and time, using a set of input simulations for train-
ing and a few parameters for generation. This enables fast reconstruction of velocities, continuous interpolation and latent space simulations.

Abstract
This paper presents a novel generative model to synthesize fluid simulations from a set of reduced parameters. A convolutional
neural network is trained on a collection of discrete, parameterizable fluid simulation velocity fields. Due to the capability of
deep learning architectures to learn representative features of the data, our generative model is able to accurately approximate
the training data set, while providing plausible interpolated in-betweens. The proposed generative model is optimized for fluids
by a novel loss function that guarantees divergence-free velocity fields at all times. In addition, we demonstrate that we can
handle complex parameterizations in reduced spaces, and advance simulations in time by integrating in the latent space with
a second network. Our method models a wide variety of fluid behaviors, thus enabling applications such as fast construction
of simulations, interpolation of fluids with different parameters, time re-sampling, latent space simulations, and compression
of fluid simulation data. Reconstructed velocity fields are generated up to 700⇥ faster than re-simulating the data with the
underlying CPU solver, while achieving compression rates of up to 1300⇥.
CCS Concepts
• Computing methodologies ! Physical simulation; Neural networks;

1. Introduction

Accordingly, they have been adopted for many applications in
graphics, such as generating terrains [GDG⇤17], high-resolution
faces synthesis [KALL17] and cloud rendering [KMM⇤17]. In
fluid simulation, machine learning techniques have been used
to replace [LJS⇤15], speed up [TSSP17] or enhance existing
solvers [XFCT18].

Given the amount of available fluid simulation data, data-
driven approaches have emerged as attractive solutions. Subspace
solvers [TLP06], fluid re-simulators [KD13] and basis compres-

sors [JSK16] are examples of recent efforts in this direction. How-
ever, these methods usually represent fluids using linear basis func-
tions, e.g., constructed via Singular Value Decomposition (SVD),
which are less efficient than their non-linear counterparts. In this
sense, deep generative models implemented by convolutional neu-
ral networks (CNNs) show promise for representing data in reduced
dimensions due to their capability to tailor non-linear functions to
input data.

In this paper, we propose the first generative neural network - the
Deep Fluids network [ano18]- that fully constructs dynamic Eule-

submitted to EUROGRAPHICS 2019.

• Input	parameterizable data	set
• Generative	network	with	supervised	training
• Latent	space	time	integration	network
• >1300x	compression,	>700x	speed-up,	trained	model	30MB	

Kim	2019
Talk	tomorrow	9:30

Eurographics19 Tutorial - SPH 19

TempoGAN - Superresolution Fluids

95:2 • Xie, Y., Franz, E., Chu, M., Thuerey, N.

will demonstrate that it is especially important to make the training
process aware of the underlying transport phenomena, such that the
network can learn to generate stable and highly detailed solutions.

Capturing the intricate details of turbulent �ows has been a long-
standing challenge for numerical simulations. Resolving such details
with discretized models induces enormous computational costs and
quickly becomes infeasible for �ows on human space and time scales.
While algorithms to increase the apparent resolution of simulations
can alleviate this problem [Kim et al. 2008], they are typically based
on procedural models that are only loosely inspired by the under-
lying physics. In contrast to all previous methods, our algorithm
represents a physically-based interpolation, that does not require
any form of additional temporal data or quantities tracked over time.
The super-resolution process is instantaneous, based on volumetric
data from a single frame of a �uid simulation. We found that infer-
ence of high-resolution data in a �uid �ow setting bene�ts from the
availability of information about the �ow. In our case, this takes the
shape of additional physical variables such as velocity and vorticity
as inputs, which in turn yield means for artistic control. A particular
challenge in the �eld of super-resolution �ow is how to evaluate the
quality of the generated output. As we are typically targeting turbu-
lent motions, a single coarse approximation can be associated with
a large variety of signi�cantly di�erent high-resolution versions.
As long as the output matches the correlated spatial and temporal
distributions of the reference data, it represents a correct solution.
To encode this requirement in the training process of a neural net-
work, we employ so-called generative adversarial networks (GANs).
These methods train a generator, as well as a second network, the
discriminator that learns to judge how closely the generated output
matches the ground truth data. In this way, we train a specialized,
data-driven loss function alongside the generative network, while
making sure it is di�erentiable and compatible with the training pro-
cess. We not only employ this adversarial approach for the smoke
density outputs, but we also train a specialized and novel adversar-
ial loss function that learns to judge the temporal coherence of the
outputs.

We additionally present best practices to set up a training pipeline
for physics-based GANs. E.g., we found it particularly useful to
have physics-aware data augmentation functionality in place. The
large amounts of space-time data that arise in the context of many
physics problems quickly bring typical hardware environments
to their limits. As such, we found data augmentation crucial to
avoid over�tting. We also explored a variety of di�erent variants
for setting up the networks as well as training them, and we will
evaluate them in terms of their capabilities to learn high-resolution
physics functions below.
To summarize, the main contributions of our work are:

• a novel temporal discriminator, to generate consistent and
highly detailed results over time,

• artistic control of the outputs, in the form of additional loss
terms and an intentional entangling of the physical quantities
used as inputs,

• a physics aware data augmentation method,
• and a thorough evaluation of adversarial training processes
for physics functions.

𝑥𝑎

𝑥𝑡−1

𝑥𝑡

𝑥𝑡+1 𝑦𝑡−1 𝑦𝑡 𝑦𝑡+1

𝐺(𝑥𝑡−1) 𝐺(𝑥𝑡) 𝐺(𝑥𝑡+1)

𝑦𝑎

𝐺(𝑥𝑎)

Fig. 2. This figure gives a high level overview of our approach: a generator
on the le�, is guided during training by two discriminator networks (right),
one of which focuses on space (Ds), while the other one focuses on temporal
aspects (Dt). At runtime, both are discarded, and only the generator network
is evaluated.

To the best of our knowledge, our approach is the �rst generative
adversarial network for four-dimensional functions, and we will
demonstrate that it successfully learns to infer solutions for �ow
transport processes from approximate solutions. A high level pre-
view of the architecture we propose can be found in Fig. 2.

2 RELATED WORK
In the area of computer vision, deep learning techniques have achiev-
ed signi�cant breakthroughs in numerous �elds such as classi�ca-
tion [Krizhevsky et al. 2012], object detection [Girshick et al. 2014],
style transfer [Luan et al. 2017], novel view synthesis [Flynn et al.
2016], and additionally, in the area of content creation. For more in-
depth reviews of neural networks and deep learning techniques, we
refer the readers to corresponding books [Bishop 2006; Goodfellow
et al. 2016].
One of the popular methods to generate content are so called

generative adversarial networks (GANs), introduced by Goodfellow
et al. [Goodfellow et al. 2014]. They were shown to be particularly
powerful at re-creating the distributions of complex data sets such
as images of human faces. Depending on the kind of input data they
take, GANs can be separated into unconditional and conditional
ones. The formers generate realistic data from samples of a synthetic
data distribution like Gaussian noise. The DC-GAN [Radford et al.
2016] is a good example of an unconditional GAN. It was designed
for generic natural images, while the cycle-consistent GAN by Zhu
et al. [2017] was developed to translate between di�erent classes
of images. The conditional GANs were introduced by Mirza and
Osindero [2014], and provide the network with an input that is
in some way related to the target function in order to control the
generated output. Therefore, conditional variants are popular for
transformation tasks, such as image translations problems [Isola
et al. 2017] and super resolution problems [Ledig et al. 2016].
In the �eld of super-resolution techniques, researchers have ex-

plored di�erent network architectures. E.g., convolutional networks

ACM Transactions on Graphics, Vol. 37, No. 4, Article 95. Publication date: August 2018.

Xie et	al.	2018

• Infer	high-resolution	details
• Generator,	guided	during	training	by	two	discriminator	networks	(space	and	time)
• Training	data:	low- and	high-res	density	pairs	(density,	velocity,	vorticity)

Eurographics19 Tutorial - SPH

• Transfer	low- and	high-level	style	features	from	images	to	4D	fluid	data
• Structurally	and	temporally	coherent
• Pre-trained	networks	on	images,	3d	reconstruction

20

FlowStyle – Neural	Stylization	of	Flows

Eurographics19 Tutorial - SPH 21

Potential	and Challenges of Data-driven Fluids

What are the challenges?
Loads	of data (expensive,	lack	of data sets),	training time	/	re-training,	visual quality
(memory limitations),	4D	data,	network architecture and parameters

Use DL	as a	black box?	
No;	synergistic combination of mathematical models and data

What is the potential	of data-driven simulations?
Computational speed,	data compression,	novel applications:	quick	simulation previews,	
interpolation of simulations,	image-based modeling and control...

Unexplored area
Exciting research,	triggers research and collaborations across disciplines

