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My First Multi-fluid SPH Solver

e Particles carry attributes individually

— Mass, rest density
— Concentration, temperature, viscosity, ...

e Two fluids a and b, with

e Buoyancy emerges from individual rest densities




My First Multi-fluid SPH Solver

Switching densities Boiling Lavalamp

Lenaerts & Dutre 2009




High Density Ratios
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Interface Discontinuities

e Standard SPH (SESPH)
— Cannot handle discontinuities at interfaces
— Results in spurious and unphysical interface tension

— Large density differences lead to instability problems

e Adapted SPH
— Capture density discontinuities across interfaces
— Stable simulations despite high density ratios

— We need full control over behavior




Interface Discontinuities

Problems near interfaces where rest densities and
masses vary

e Falsified smoothed quantities

,O desired

Fluid 1
£,=1000

Color-coded density

1000




Interface Discontinuities

Problems near interfaces where rest densities and
masses vary

e Falsified smoothed quantities
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Adapted Density and Pressure

e Use numberdensity & = ¥; W,
e Adapted density of particle i given by pi = m;0; ok
e Pressure computation using adapted density pi = ki ((g(l)) — 1)
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Adapted Forces

e Derive adapted forces

e Substitute adapted density and pressure into the NS pressure term

p_ _Vp
k" = 0

e Apply SPH derivation to get adapted pressure force
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e Similarly derivation of viscosity force
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Adapted SPH - Observations

e Forasingle phase fluid equations are identical to SESPH

e For multi-fluid simulations interface problems are eliminated

e No performance overhead

e Extended with incompressibility condition [Akinci et al. 12, Gissler et al. 19]




Adapted SPH - Results




Diffusion Effects

e Diffusion equation & =aV*C

e SPH equation i =a) m;

Color diffusion

Miiller et al. 2005 Lenaerts & Dutre 2009 Keiser et al. 2005




Complex Mixing Effects

e Previous work
— Mixture is only caused by diffusion effects
— Different phases move at the same bulk velocity as the mixture

e SPH based mixture model [Ren et al. 2014]

— Mixing and unmixing due to (relative) flow motion
and force distribution

— Dynamics of multi-fluid flow captured using mixture model

— Spatial distribution of phases modeled using volume fraction
(similar to [Muller et al. 05]) b cen ot al. 2014

— Drift velocities: Phase velocities relative to mixture average




Mixture Model

e Phase:
— Volume fraction oy, Y axr=1ax>0
— Phase velocity v_k

e Mixture:

—  Mixture density (f(0))
— Mixture velocity Vi

e Continuity and momentum equations of the phases and mixture

» The nonuniform distribution of velocity fields will lead to changes in the
volume fraction of each phase

» The drift velocities play a key role in this interaction mechanism




Mixture Model

e Continuity equation of the mixture model D[g’:i = agt’” + V- (PmVm) =0
Pm mixture density Pm = Yk OPk

O volume fraction of phase

Vm mixture velocity (avg over all phases) Vin = Py, éckpkvm

e Momentum equation for the mixture D(ngw P4V (Tt To) + P
4

Tm  Viscous stress tensor of the mixture
Tpm diffusion tensor of the mixture (convective momentum transfer between phases)

» The nonuniform distribution of velocity fields will lead to changes in the
volume fraction of each phase

» The drift velocities play a key role in this interaction mechanism




Algorithm

3 loops over all particles:
1. Compute density and pressure with SPH

2. Compute drift velocity of each phase / particle

Analytical expression of drift velocity, three terms defining

- Slip velocity due to body forces
- Pressure effects that cause fluid phases to move from high to low pressure regions
- Brownian diffusion term representing phase drifting from high to low concentration

Update diffusion tensor, advect volume fraction
(using drift velocity)

3. Compute total force, advect particle




Immiscible and Miscible Liquids
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More Results

Rainbow Wave(ChangeColor) Previous Approach

Ren et al. 2014




Limitations and Extensions

e [Renetal 14] Uses WCSPH; a divergence-free velocity field cannot be
directly integrated since neither the mixture nor phase velocities are zero,

even if the material is incompressible

e [Yangetal.15] Energy-based model using Cahn-
Hilliard equation that describes phase separation
-> incompressible flows

e [Yan et al. 16] Extension to fluid-solid interaction
-> dissolution of solids, flows in porous media,
interaction with elastics

Yan et al. 2016




