Outline

Block 1 (9:00 - 10:30)

- Foundations of SPH
- Governing equations
- Time integration
- Example: Our first SPH solver
- Neighborhood Search

Coffee break (30min)

Block 2 (11:00 - 12:30)

- · Enforcing incompressibility
 - State equation solvers
 - Implicit pressure solvers
- Boundary Handling
 - Particle-based methods
 - Implicit approaches

Lunch break (60min)

Block 3 (13:30 - 15:00)

- Multiphase fluids
- Highly-viscous fluids
- Vorticity and turbulent fluids
- <u>Demo</u>: **SplisH**

Coffee break (30min)

Block 4 (15:30 - 17:00)

- Deformable solids
- Rigid body simulation
 - Dynamics and coupling
- Data-driven/ML techniques
- Summary and conclusion

Smoothed Particle Hydrodynamics

Techniques for the Physics Based Simulation of Fluids and Solids

Part 3 **Multiphase Fluids**

Dan **Koschier**

Jan Bender

Barbara Solenthaler **Matthias Teschner**

UNI FREIBURG

DCL R ETH zürich

Motivation

Fluid Interfaces

Complex mixing phenomena

My First Multi-fluid SPH Solver

- Particles carry attributes individually
 - Mass, rest density
 - Concentration, temperature, viscosity, …
- Two fluids a and b, with $\frac{m_a}{\rho_a^0}$ =

• Buoyancy emerges from individual rest densities

My First Multi-fluid SPH Solver

High Density Ratios

High Density Ratios

Interface Discontinuities

- Standard SPH (SESPH)
 - Cannot handle discontinuities at interfaces
 - Results in spurious and unphysical interface tension
 - Large density differences lead to instability problems
- Adapted SPH
 - Capture density discontinuities across interfaces
 - Stable simulations despite high density ratios
 - We need full control over behavior

Interface Discontinuities

- Problems near interfaces where rest densities and masses vary
- Falsified smoothed quantities

Color-coded density

Interface Discontinuities

- Problems near interfaces where rest densities and masses vary
- Falsified smoothed quantities

Adapted Density and Pressure

- Use number density $\delta_i = \sum_i W_{ij}$
- Adapted density of particle i given by $\tilde{\rho}_i = m_i \delta_i$ Pressure computation using adapted density $\tilde{p}_i = k_1 \left(\left(\frac{\tilde{\rho}_i}{\rho^0} \right)^{k_2} 1 \right)$

Adapted Forces

- Derive adapted forces
- Substitute adapted density and pressure into the NS pressure term $\mathbf{F}^p = -\frac{\nabla \tilde{p}}{\delta}$
- Apply SPH derivation to get adapted pressure force

$$\mathbf{F}_{i}^{p} = -\sum_{j} \left(\frac{\tilde{p}_{j}}{\delta_{j}^{2}} + \frac{\tilde{p}_{i}}{\delta_{i}^{2}} \right) \nabla W_{ij}$$

• Similarly derivation of viscosity force

$$\mathbf{F}_{i}^{\nu} = \frac{1}{\delta_{i}} \sum_{j} \frac{\mu_{i} + \mu_{j}}{2} \frac{1}{\delta_{j}} (\mathbf{v}_{j} - \mathbf{v}_{i}) \nabla^{2} W_{ij}$$

Adapted SPH - Observations

- For a single phase fluid equations are identical to SESPH
- For multi-fluid simulations interface problems are eliminated
- No performance overhead
- Extended with incompressibility condition [Akinci et al. 12, Gissler et al. 19]

Adapted SPH - Results

Diffusion Effects

- Diffusion equation $\frac{\partial C}{\partial t} = \alpha \nabla^2 C$
- SPH equation

$$\frac{\partial C_i}{\partial t} = \alpha \sum_j m_j \frac{C_j - C_i}{\rho_j} \nabla^2 W_{ij}$$

Color diffusion

Temperature diffusion (and phase changes)

Complex Mixing Effects

- Previous work
 - Mixture is only caused by diffusion effects
 - Different phases move at the same bulk velocity as the mixture
- SPH based mixture model [Ren et al. 2014]
 - Mixing and unmixing due to (relative) flow motion and force distribution
 - Dynamics of multi-fluid flow captured using mixture model
 - Spatial distribution of phases modeled using volume fraction (similar to [Müller et al. 05])
 - Drift velocities: Phase velocities relative to mixture average

Mixture Model

- Phase:
 - Volume fraction α_k , $\sum_k \alpha_k = 1, \alpha_k \ge 0$.
 - Phase velocity v_k
- Mixture:
 - Mixture density $(f(\alpha_k))$
 - Mixture velocity \mathbf{v}_m

- Continuity and momentum equations of the phases and mixture
 - The nonuniform distribution of velocity fields will lead to changes in the volume fraction of each phase
 - > The drift velocities play a key role in this interaction mechanism

Mixture Model

- Continuity equation of the mixture model $\frac{D\rho_m}{Dt} = \frac{\partial\rho_m}{\partial t} + \nabla \cdot (\rho_m \mathbf{v}_m) = 0$
 - ho_m mixture density $ho_m = \sum_k lpha_k
 ho_k$
 - α_k volume fraction of phase

 \mathbf{v}_m mixture velocity (avg over all phases) $\mathbf{v}_m = \frac{1}{\rho_m \sum_k \alpha_k \rho_k \mathbf{v}_m}$

- Momentum equation for the mixture
 - τ_m viscous stress tensor of the mixture
 - τ_{Dm} diffusion tensor of the mixture (convective momentum transfer between phases)
- The nonuniform distribution of velocity fields will lead to changes in the volume fraction of each phase
- > The drift velocities play a key role in this interaction mechanism

$$\frac{\mathrm{D}(\boldsymbol{\rho}_m, \mathbf{v}_m)}{\mathrm{D}t} = -\nabla p + \nabla \cdot (\boldsymbol{\tau}_m + \boldsymbol{\tau}_{Dm}) + \boldsymbol{\rho}_m \mathbf{g}$$

Algorithm

3 loops over all particles:

- 1. Compute density and pressure with SPH
- 2. Compute drift velocity of each phase / particle

Analytical expression of drift velocity, three terms defining

- Slip velocity due to body forces
- Pressure effects that cause fluid phases to move from high to low pressure regions
- Brownian diffusion term representing phase drifting from high to low concentration

Update diffusion tensor, advect volume fraction (using drift velocity)

3. Compute total force, advect particle

Immiscible and Miscible Liquids

More Results

CGLSA

Limitations and Extensions

- [Ren et al. 14] Uses WCSPH; a divergence-free velocity field cannot be directly integrated since neither the mixture nor phase velocities are zero, even if the material is incompressible
- [Yang et al. 15] Energy-based model using Cahn-Hilliard equation that describes phase separation
 -> incompressible flows
- [Yan et al. 16] Extension to fluid-solid interaction
 -> dissolution of solids, flows in porous media,
 interaction with elastics

