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SPH Fluid Solver

— Neighbor search
— Incompressibility
— Boundary handling
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Motivation

— Incompressibility is essential for a realistic fluid behavior
— Less than 0.1% volume / density deviation in typical scenarios
— Inappropriate compression leads, e.g.,
to volume oscillations or volume loss
— Enforcing incompressibility significantly
influences the performance
— Simple approaches require small time steps
— Expensive approaches work with large time steps



Approaches

— Minimization of density / volume errors
— Measure difference of actual and desired density

— Compute pressure and pressure accelerations
that reduce density / volume deviations

— Minimization of velocity divergence
— Measure the divergence of the velocity field

— Compute pressure and pressure accelerations
that reduce the divergence of the velocity field



Typical Implementation

— Split pressure and non-pressure acceleration
Du®) — —_L-Vp(t) + amo(1)

— Predict velocity after non-pressure acceleration
v* = v(t) + Ata™"P(t)

— Compute pressure such that pressure acceleration
either minimizes the divergence of v* or the density
error after advecting the samples with »*

— Update velocity w(t+ At) = v* — At 55 Vi(t)

— Minimized density error / divergence at advected samples



Density Invariance vs. Velocity Divergence
— Continuity equation: & =—-pV - v

— Time rate of change of the density is
related to the divergence of the velocity
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Density Invariance vs. Velocity Divergence

— Density invariance
— Measure and minimize density deviations

— Velocity divergence
— Measure and minimize the divergence of the velocity field

— /ero velocity divergence corresponds to zero density
change over time —p;V - v; = 22 =0, i.e. the initial
density does not change over time

— Notion of density is not required




Challenges

— Minimizing density deviations can
result in volume oscillations

— Density error is — T

going up and down
— Erroneous fluid dynamics
— Only very small density

deviations are tolerable,
e.g2. 0.1%

https://www.youtube.com/watch?v=hAPOOxBp5WU
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Challenges

— Minimizing the velocity
divergence can result
in volume loss

— Divergence errors
result in density drift

— No notion of actual
density
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Low Viscosity

High Viscosity
Shear Thinning

[Zhu, Lee, Quigley, Fedkiw, ACM SIGGRAPH 2015]



SPH Graphics Research - Incompressibility

— State equation
— [Becker 2007]

— Iterative state equation

— PCISPH [Solenthaler 2009],
 PSPH [He 2012],
PBF [Macklin 2013]

— Pressure Poisson equation

— [ISPH [Ihmsen 2013],
DFSPH [Bender 2015],
[Cornelis 2018]




Incompressibility - Applications

— Fluids

— Elastic solids

— Rigid bodies

— Monolithic solvers with
unified representations
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State Equation SPH (SESPH)

— Compute pressure from the density deviation
locally with one equation for each sample / particle

— Compute pressure acceleration



State Equations

— Pressure is proportional to density error |
Pressure values in SPH

— Eg D; = k(& — 1) or p; = /{T(p,,; — PO) implementations should
a . always be non-negative.
— Referred to as compressible SPH

- =k ((2) )

— Referred to as weakly compressible SPH



SESPH - State Equation SPH Fluid Solver

for all particle © do
find neighbors 7

for all particle : do
Pi = Zj m; W@

D; = k(g—; - 1) Compute pressure with a state equation

for all particle ¢ do

for all particle © do
v; (t + At) — U; (t) -+ Ata,i (t)



SESPH - Discussion

— Compression results in pressure

— Pressure gradients result in accelerations
from high to low density

— Simple computation, small time steps

— Larger stiffness — less compressibility — smaller
time step

— Stiffness constant ¥ does not govern the pressure,
but the compressibility of the fluid



Stiffness Constant - 1D Illustration

— Gravity cancels pressure acceleration

_ _ b _ 1 = | Pi 4 Pj .
g=—al = LVp; =3, m; (B +5%) VIV,

_ Zj m, (’@(Pz‘—Po) 4 k(ﬂj—Po)) VWi

p; p3
— Differences between p; and p;
are independent from k

— Smaller & results in larger density error
pi —po tO get the required pressure

po = pog(hy — h) ‘ I_val
p1 = p1ghs ‘

p2 = p2g(h1 + h) ‘ l g
‘ Fluid

® soio

A 1D fluid under
gravity at rest




SESPH with Splitting

— Split pressure and non-pressure accelerations
— Non-pressure acceleration a;°"
— Predicted velocity vy = v;(t) + Ata;”
— Predicted position x; = x;(t) + Ato]
— Predicted density p; ()
— Pressure p from predicted density p;
— Pressure acceleration a®
— Final velocity and position wi(t + At) = v} + Ata} = v} — At_=Vp;

£; (t + At) = €&; (t) -+ Atvi (t —+ At)



SESPH with Splitting

for all particle v do
find neighbors j

for all particle v do

nonp 2,
a, =vV°v; +g

i = v;(t) + Ata"

1

for all particle ©: do

p; = Zj m;W,;; + At Zj m; (v} —v;) VW, Density at predicted positions

Pi = k(% —1) Pressure at predicted positions
for all particle © do

a; = —ivpz’

for all particle ©: do
v;(t + At) = v + Atal
Z; (t 0 At) — 405 (t) + Atw; (t -+ At)



Differential Density Update

— Density at advected positions is often
approximated without advecting the samples

— Continuity equation and time discretization

Dpi __ p; —pi(t) _
e = AV U S ==V

— SPH discretization
;=22 mi Wi » »
> = —pi (—i > my(v7 — ’ijWz'j)

At Pi

— Predicted density due to the divergence of v;

* __ W + AL ms(vF — v YV, Approximate density at predicted
Pi ZJ iWij T ZJ 9( £ J )V ! positions: & = x;(t) + Atv;




SESPH with Splitting - Discussion

— Consider competing accelerations

— Take effects of non-pressure accelerations
iNnto account when computing the pressure
acceleration

— Incompressibility has highest priority
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[terative SESPH with Splitting

— Pressure accelerations are iteratively refinec

Predicted velocity

— Pressure acceleration

— Refine predicted velocity
— Final velocity and position

Non-pressure acceleration

terate until convergence
— Density from predicted position
— Pressure from predicted density

v;(t + At) = v}

nonp
)

vf = wv;(t) + Ata]"?

7

£; (t + At) = €&; (t) -+ Atvi (t —+ At)



[terative SESPH with Splitting - Motivation

— |terative update is parameterized
Oy a desired density error

— Provides a fluid state with a
guaranteed density error

— Stiffness parameter and form of the state
eguation govern the convergence rate




[terative SESPH with Splitting

for all particle i do
find neighbors j

for all particle i do

a, "’ =vViv, +g ; vi=wv(t)+ Ata;""?
repeat

for all particle i do

p; =2 ;miWi; + At Y . mj(vf — vi ) VW,
(P _
Pi = k(po 1)

for all particle 1 do
v =v] — Atp%sz-

until p; — po <7 user-defined density error
for all particle i do

v;(t + At) = v ;

1 ?

xXr; (t + At) = acz(t) + At'vz- (t + At)



[terative SESPH - Variants

— Different quantities are accumulated
— Velocity changes (local Poisson SPH LPSPH)

— Pressure (predictive-corrective SPH PCISPH) [Solenthaler 2009]
— Advantageous, if pressure is required for other computations

— Distances (position-based fluids PBF)
— Ay = —— j(&+g_§)vwij

Po Bz

— Different EOS and Stiffness constants are used

— pi = k(pi — po) With k = 5254 in local Poisson SPH

— Pi — k(p’t _PO) Wltq k — 2m2 Atz(z vw(} Z @WO +Z (VWO VWO ) |n PClSPH

— pi =k(5t —1) with k=11in PBF




Predictive-Corrective Incompressible SPH - PCISPH

— Goal: Computation of pressure accelerations a;
that result in rest density po at all particles

— Formulation: Density at the next time
step should equal the rest density

Desired  Current Density change due Density change due to

density  density to predicted velocity unknown pressure acceleration _
Discretized

p(t+At) = pg = Zm%-Wij + Atz m;(v; —v;)VIW;; +Athj(Ataf—Ata?)VWij continuity
J J J equation

o o

"2l
>k
P;




PCISPH - Assumptions

— Simplifications to get one eqguation with one unknown:
— Equal pressure at all neighboring samples

CLE = _Zj mJ(E—% + %)VWZJ ~ —mi% ZJ VW@J

po — p; = AtQij (—mi% ZVW@-J- +mj% ZVij) VWi; Unknown pressures p;and p;
; 07 0 &
— For sample J, only consider the contribution from /

po — pi = At? ij ( i ZVW + m; e 'VWj@-) VWi, Unknown pressure p;
0 j 0

J

po—pE—At2m22p ( > VWi - )VW = A2l (va ZVW +Z (VWi VWJ))



PCISPH - Solution

— Solve for unknown pressure:

2p;
po — pf = —ACTE 2 ST VW - STV + S (VW - V)
Po \ 5 J j
o
Pi = (pi — po) pi = k(p; —
2ARIMI(Y, VWij - 52, VWi + 5 (VWi - VW) ( (P = po) )

Intuition: This pressure causes pressure accelerations that cause velocity changes
that correspond to a divergence that results in rest density at the sample.

p(t+ At) = po = pf + At Y m;(Atab — Ata®)VIV;;

J



PCISPH - Discussion

— Pressure is computed with a state equation p: = ki(p; — po)
— kIS not user-defined

— Instead, an optimized value &; is derived and used

— Pressure is iteratively refined



PCISPH - Performance

— Typically three to five iterations for
density errors between 0.1% and 1%

— Speed-up factor over non-iterative SESPH up to 50
— More computations per time step compared to SESPH
— Significantly larger time step than in SESPH
— Speed-up dependent on scenario

— Non-linear relation between time step and iterations

— Largest possible time step does not necessarily
lead to an optimal overall performance



Comparison

— PCISPH [Solenthaler 2009]

— |terative pressure
computation

— Large time step

— WCSPH [Becker and Teschner 2007]
— Efficient to compute
— Small time step

— Computation time for the
PCISPH scenario is 20 times shorter than WCSPH

PCISPH
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Introduction

— Pressure causes pressure accelerations that
cause velocity change that cause displacements
such that particles have rest density

— Projection schemes solve a linear system
to compute the respective pressure fielo
— PCISPH uses simplifications to compute

pressure per particle from one equation.
Solving a linear system is avoided.




Derivation

Dv(t) _ 1 nonp Velocity change per time step due to pressure
Dt pr(t) & (t) acceleration and non-pressure acceleration

v* = v(t) + Ata™°"P (1) Predicted velocity after non-pressure acceleration

v(t + At) = v* — At%Vp(t) Velocity after all accelerations

v(t + At) —v* = —At%Vp(t) Velocity change due to pressure acceleration

(kL v 1 Divergence of the velocity change
V. (v —v(t+At) =V (Atpr(t))

due to pressure acceleration



Derivation

V(0" —v(t+At) =V- (At%Vp(t))
Vv — V.ot +At) =V (At%Vp(t))

Constraint: V- v(t + At) =0

V.-v*=-V-(AtaP)

pV - v* = AtV?p(t)

Divergence of the final velocity field should
be zero, i.e. no density change per time

Divergence of the velocity change due to
pressure acceleration should cancel the
divergence of the predicted velocity

Pressure Poisson equation
with unknown pressure



Density Invariance vs. Velocity Divergence

— Pressure Poisson equation PPE that minimizes
the velocity divergence: Atv2p(t) = pV - v*

— PPE that minimizes the density error: Atv?p(t) = £

— Derivation: bppetay Discretized continuity
pr T PEHAYV vt +Al) =0 equation at time t + At

Constraint: p(t + At) = po
Lo—plt) | 53V - (v* — Atpiovp(t)) —0

00— —A OV"U
po—(p(t) Attp ) _ AtV2p(t) =0

Predicted density after
sample advection with v*

p* = p(t) — AtpgV - v*



Interpretation of PPE Forms

— Velocity divergence: —At,;V?p= -V .v*

— Pressure p causes a pressure acceleration —Vp that causes
a velocity change —At-Vp whose divergence V - (—At-Vp)
cancels the divergence V - v* of the predicted velocity, i.e.
V-v"+V. (—At%Vp) =0

— Density invariance: —Atv2p = — 22"

— The divergence V - (-At; Vp) multiplied with density p is a
density change per time that cancels the predicted density
error per time 2227 e, 25 + pV - (~AtLV2p) =0




PPE Solver

— Linear system with unknown pressure values Ap = s
— One equation per particle (Ap); =s; (At < V2p; >= L=Spi>)
' <A> is a discretized
— |terative solvers e sl
— Conjugate Gradient

— Relaxed Jacobi
— Fast computation per iteration
— Few non-zero entries in each equation

— Matrix-free implementations
— Very few information per particle




PPE Solver

— Very large time steps

— Convergence dependent on the formulation

— SPH discretization of V2p

— Source term (velocity divergence or density invariance)
— ACcuracy issues

— Volume drift for velocity divergence
— Oscillations for density invariance



PPE Discretization

— Implicit incompressible SPH (IISPH) [Ihmsen et al. 2014]
— PPE with density invariance as source term: At2V2p = pg — p*

— Computation of #;:
p; = pi + At myvy VW WIth vf = v, + Ataj™™

— Computation of A2v2p;:
At*V?p; = —Atp;V - (Ata}) = At? Y m; (af — af) - VW,
with
a; = Vpi=— Y. m; (p—§ + p—%) VW,;

J

=)
D



PPE System - |ISPH

— PPE At*V?p; = po — p;
density change due to negative of the
pressure accelerations predicted density error

— Discretized PPE
— System: Ap =s

o~

— Per particler a2y m; (a? —af) VWi = o —p}  aP = = ¥, m; (B + %) YW
J

A

/ Si

¥

(Ap);

— Interpretation:
At Zj m; (Ataf — Ata?) VWU = po — p;k
At Zj mj (’Uf — ’Uf) VWTIJ = pPo — p:‘
At-p;- V-] =po—p

*

1

Pressure accelerations cause a velocity
change vP whose divergence causes a
density change.



PPE Solver - IISPH

— Relaxed Jacobi: pi™" = max (p} +w =420 o)
— For lISPH, typically w =0.5

— Diagonal element ay
— Accumulate all coefficients of p; in A2}, m; (af — ab) VW

J

— A4 — At2 Zj mj (— Zj ?Z—?JVWZJ) . VW@J —|- Atz Zj mj (T;—ngﬂ) : VWTJ

— Note, that the first pressure update is p; = 0+w= = £ (p; — p*)  State equation

— Using the incompressible PPE variant [ISPH with one solver iteration
corresponds to compressible state-equation SPH with pi = —2=(p" — po)




PPE Solver Implementation - |ISPH

— Initialization:  ri=X;mWy ai=...
’U _v?/_|_AtanOIlp
si = po — pi — At ) m;v; VW,

0 = max (wa—M,O)
— Solver update in iteration /.
— First loop: (a?)lz—ZJmJ(; J)VWW
— Second loop: (Ap); = A2 Y, m; ((a))! — (a})) VIV

pi_H = max (pz- + w '_gf‘_p )i ,0) If a; not equal to zero

(psror)t = (ApY); — s; Continue until error is small



Boundary Handling - IISPH

— PPE: Atzvzpf = po — p; = po — pf + AtpoV - rv;; Index findicates a fluid sample.
Index b indicates a boundary sample.

— Discretized PPE: Ap = s frindicates a fluid neighbor of f.

f, indicates a boundary neighbor of /.

(Ap)f = At? fo my, (al} — a?f) VWfff + At? Zfb mfbal}VWffb
1257
ay=—>; my (% + p—) VWige =725 M52 2 VW5,

sy = po—ps—At fo my, (’U}i — ’U;f»f) VWfff—At Zfb mf, (’U;Z — ’Ufb(t + At)) VWey,



Boundary Handling - IISPH

— Diagonal element

mf m
afpp =At? Z mpy; ( Z — -V Wyp, — 2y Z L VWffb) VWgy,

2
1 Py, T Po

m
+ A my, (piVWfff) VWiy,
f

mg mg
-+ At2 E mye | — E —5 / VWfff — 2 E 2b VWffb VWffb
fo fr pff fo Po



[ISPH with Boundary - Implementation

— Initialization:

pr =25, MWy + 2, mpWyyp,  app=...
v} =wvy + Ata; "
sp=po—p;— At myp s VW — At )0, mpvi, VWyy,

U — S
py = max (waff : O)

— Solver update in iteration /.

— First loop:

— Second loop:

f

(Ap'); = ALYy my, ((aB)! = (@},)!) YWy, + AR S, my, (a}) YWy,

p Py p'
(a?) — —fo mpy, ( oy f) VWi, —’ysz mbeéVWffb

pic“ — max (plf + w=t éip )1 O) If a5 not equal to zero
( ermr)l (Apl)f — Sf Continue until error is small



[ISPH vs. PCISPH

— Breaking dam
— 100k samples with diameter 0.05m, 0.01% ave density error

PCISPH ITISPH PCISPH / 1ISPH

total comp. time [s] total comp. time [s] ratio
At [s] avg. iter. pressure overall avg. iter. pressure overall iterations pressure overall
0.0005 4.3 540 1195 2.2 148 978 2.0 3.6 1.2
0.00067 7.2 647 1145 2.9 149 753 2.5 4.3 1.5
0.001 14.9 856 1187 4.9 164 576 3.0 5.2 2.1
0.0025 66.5 1495 1540 18.4 242 410 3.6 6.2 3.8
0.004 - - - 33.5 273 379 - - -
0.005 - - - 45.8 297 383

— Largest possible time step does not
necessarily result in the best performance
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Current Developments

— DFSPH [Bender 2015]
— Combination of two PPEs (inspired by [Hu 2007])

— Resolving compressibility and removing
velocity divergence in two steps

— Currently the most efficient solver

— [Cornelis 2018]

— Various formulations for combining two PPEs

— [Fuerstenau 201 /]
— Discretization of the Laplacian



