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Incompressibility

— |Is essential for a realistic fluid behavior
— Less than 0.1% density deviation in typical scenarios

— Inappropriate compression leads to
volume oscillations or volume loss

— Significant influence on the performance
— Local approaches require small time steps
— Global approaches work with large time steps
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Fluid Simulation Setting

Fluid Set of parcels
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Governing Eqguations

. . dx

— Position change: a — Vv

— Velocity change: T = —Vp+ Vv +g
— Incompressibility constraint: L=_—p-V-v=0
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Accelerations

— Realize fluid properties
— Navier-Stokes equation

% = — %Vp + vV3iv + 8
Incompressibility  Viscosity Gravity

P qhonp
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Pressure Acceleration

— Realizes the incompressibility constraint

— Typical implementation
— Predict velocity from non-pressure accelerations
v =v + At-a"°"P

— Compute pressure p such that the velocity change
At - aP results in a divergence-free velocity field, i.e.

d
T =—p-V-v=0
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Pressure

— Quantifies compression
— Grows with growing density error / deviation

— Pressure acceleration —;Vp

— Accelerates particles from positions with larger pressure /
density error towards positions with smaller pressure
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Compression

— Current density deviation: p — "

— Predicted density deviation:
vi=v+4+At-a"" = x* = pf = pf — pY
=p*=p—At-p°-V.v* = p"—p’
— Density change within a time step
— Velocity divergence: —At-p” -V -v
— Divergence of the predicted velocity: —A¢-p” -V .- v*
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Local Pressure

— Per particle { with a state equation
pi = k(p; — p°) pi = k1(pi — p°)*

pi = —k(At-p°-V-v;) pi=ki(5 —1)

— Typically clamped to non-negative values

— Very efficient per-particle computations pi = —--Vp;
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State Equation Governs Density Error

— A fluid under gravity at rest
— Gravity cancels pressure acceleration

g=—a; = 1sz—2jmj (ﬁ—é %)VW@

k 7 0 k J 0
:ijj( (pi—po) | Ko p))VWw

pf,; PJ

— Differences between p; and p;
are independent from k&

— Smaller £ results in larger density error

Pi

— po to get the desired pressure
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Local vs. Global Pressure

— Local
— Pressure per particle
— Weakly compressible

— Global

— Pressure per particle

— Conceptually considers the pressure gradient

— Formulations involve pressure at adjacent particles
— Linear system

— Incompressible
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Global Pressure — An Intuition

— Pressure field corresponds to

an acceleration aj = ——-Vp;

a velocity change AvP = —At%VpZ

with a divergence V-Av) = =V - (At=-Vp;)

and a density change ApP = At - p; -V - (At=-Vp;

— Density change due to pressure gradient cancels
compression At p; - V- (At==Vp;) + (pf — p°) =0

Density change due to

: Compression
pressure gradient P
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Pressure Poisson Equation PPE

— Per-particle equation

At-pi -V - (At-Vpi) + (pf —p°) =0
— Vp; involves pressure at adjacent particles
— Linear system / global formulation

— Various forms with different compression

computations, I.e. source terms, e.g.
o0 _ p’—p; 2. 2p. — 0 (g — At-p T . v*
At -V Pi = —A7 At -V Pi = p (pz At Pi V Vz’)

At-V2p;,=p; -V v}
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SPH Discretization

— System Ap =s, particle equations (Ap); = s;
— Source term s
— SPH density and SPH divergence formulations

— Laplace term (Ap);
— Various options, e.g. [ISPH

al = =% my (B + %) VW
J P P

T

(Ap); = At? Zj m; (af + af) VWi,
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PPE Solver (1I1SPH)

— Jacobi solver
— Iterative pressure update
— |teration I

for all particle 1 do
l ! p;
(a7) = —>_;m; (ﬁ—z p—g) VWi

for all particle 1 do

(Ap)! = AL Y m; ((aD)' + (ab)") v
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Solver Iteration

— Can be implemented in various forms
— 1ISPH [lhmsen et al ]
— PCISPH [Solenthaler, Pajarola]
— PBF [Macklin, Muller]
— DFSPH [Bender, Koschier]

— Derivations use different intuitions

— Solver Iiterations are all equivalent
[Koschier et al. “"A Survey on SPH Methods in Computer Graphics”, STAR, EG 2022]
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Performance Differences

— IISPH, PCISPH, PBF, DFSPH
differ in terms of performance

— Different boundary handling

— Different implementation details, e.qg.
Zj (ng)vwij + Zj (Zg VWEWW@
— Occurs in all implementations
— Approximated for a template particle
— Computed per particle
— Computed per particle per iteration
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Global Pressure - Summary

— [ISPH, PCISPH, PBF, DFSPH

— Jacobi PPE solver

— Different intuitions in the derivations

— Original formulations with different boundary handlings
— Implementation details / SPH discretizations differ

— Typically preferred over local pressure solvers

— Efficient due to large time steps
— Robust / stable
— Easy and intuitive to parameterize
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