# A Survey on SPH Methods in Computer Graphics

Dan Koschier

**Jan Bender** 

Matthias Teschner Barbara Solenthaler





#### **State-of-the-Art**







Weiler et al. 2018



#### **Overview**

#### Introduction



# Foundations of SPH and PDE Discretization

#### **Material Models**





Incompressibility and Pressure Solvers Data-Driven Approaches and ML Models



Conclusion

# **Myths about SPH**

"An SPH particle represents a molecule"

"SPH suffers from energy loss due to the smoothing"



"Grid approaches are better than SPH"

# "SPH is (only) O<sup>th</sup>-order consistent"

"An SPH particle represents a droplet"

"SPH is better then grid approaches"

"SPH can only be used for fluid dynamics (it's in the name!)"

#### What is SPH?



#### **SPH Discretization Pipeline**

```
PDE: \nabla \times \mathbf{f} + \nabla g = \mathbf{h}(f,g)
```



## **Continuous Approximation**

• The dirac-
$$\delta$$
 identity  $\delta(\mathbf{r}) = \begin{cases} \infty & \text{if } \mathbf{r} = 0 \\ 0 & \text{otherwise} \end{cases}, \int_{\mathbb{R}^d} \delta(\mathbf{r}) dv = 1 \\ A(\mathbf{x}) = (A * \delta)(\mathbf{x}) = \int_{\mathbb{R}^d} A(\mathbf{x}') \delta(\mathbf{x} - \mathbf{x}') dv \end{cases}$ 

- Approximation with Gaussian kernel  $~~\mathcal{N}(\mathbf{x};0,\sigma^2)$
- Gaussian zero-variance limit

$$\lim_{\sigma \to 0} \mathcal{N}(\mathbf{x}; 0, \sigma^2) = \delta(\mathbf{x})$$



- Replace Gaussian with kernel  $W(\mathbf{x},h) pprox \mathcal{N}(\mathbf{x};0,h)$
- Why is the convolution necessary?

$$\nabla A? \xrightarrow{\text{(shift onto kernel)}} \int_{\mathbb{R}^d} A(\mathbf{x}') \nabla W(\mathbf{x} - \mathbf{x}', h) d\mathbf{x}'$$

#### **Continuous Approximation – Kernel Choice**



# Useful Properties (optional) $W(\mathbf{r}, h) \ge 0$ (positivity condition) $W(\mathbf{r}, h) = W(-\mathbf{r}, h)$ (symmetry condition) $W(\mathbf{r}, h) = 0$ for $\|\mathbf{r}\| \ge \overline{h}$ (compact support cond.)

#### **Global vs Compact Support**



#### **Continuous Approximation – Consistency**

• How accurate is the continuous approximation?

$$(A * W)(\mathbf{x}) = A(\mathbf{x}) \int W(\mathbf{x} - \mathbf{x}', h) dv' + \nabla A|_{\mathbf{x}} \cdot \int (\mathbf{x} - \mathbf{x}') W(\mathbf{x} - \mathbf{x}', h) dv' + \mathcal{O}(||\mathbf{x} - \mathbf{x}'||^2)$$

$$= 0$$
if kernel normalized if kernel symmetric

- Normalized, symmetric kernel is 1<sup>st</sup>-order consistent
- Specialized kernels with higher-order consistency can be constructed (see [LL10])

#### **SPH Discretization Pipeline**

PDE:  $\nabla \times \mathbf{f} + \nabla g = \mathbf{h}(f,g)$ 



#### **Particle Discretization**



#### **Particle Discretization – Consistency**

• How accurate is the discrete approximation?

$$A(\mathbf{x}_{i}) \approx \sum_{j} A_{j} \frac{m_{j}}{\rho_{j}} W_{ij} = A_{i} \sum_{j} \frac{m_{j}}{\rho_{j}} W_{ij} + \nabla A|_{\mathbf{x}_{i}} \cdot \underbrace{\sum_{j} \frac{m_{j}}{\rho_{j}} (\mathbf{x}_{j} - \mathbf{x}_{i}) W_{ij}}_{\text{for 0^{th}-order consistency}} + \mathcal{O}(||\mathbf{x}_{j} - \mathbf{x}_{i}||^{2})$$

- Highly dependent on particle ordering
- Is this a problem?
  - Not really! Approximation quality usually still sufficient
  - <u>Alternatively</u>: order recovery
- Also: polynomial error is only half the truth
  - Does not take important physical conservational properties into account

#### **Particle Discretization – Example**

- Setting:
  - Rectangular domain discretized into particles
  - Test function sampled on particles
  - Discretization quality measured along red line
- Results good despite lack of consistency order





# **Operator Discretization**

- Direct discretization
  - Operator "shifts" to kernel function
  - Simple
  - Gradient can be reused in implementations
- Direct form might lead to unstable simulations!
- Improved variants:
  - Difference formula
  - Symmetric formula
  - ...

$$egin{aligned} 
abla A_i &pprox \sum_j A_j rac{m_j}{
ho_j} 
abla W_{ij} \ 
abla \mathbf{A}_i &pprox \sum_j \mathbf{A}_j rac{m_j}{
ho_j} \otimes 
abla W_{ij} \ 
abla \cdot \mathbf{A}_i &pprox \sum_j \mathbf{A}_j rac{m_j}{
ho_j} \cdot 
abla W_{ij} \ 
abla & \mathbf{X} \mathbf{A}_i & pprox \sum_j \mathbf{A}_j rac{m_j}{
ho_j} \times 
abla W_{ij} \end{aligned}$$

#### **Symmetric Formula**

• Derived from discrete Lagrangian in hydrodynamic systems:

$$\nabla A_i \approx \rho_i \left( \frac{A_i}{\rho_i^2} \langle \nabla \rho \rangle + \langle \nabla \left( \frac{A_i}{\rho_i} \right) \rangle \right) = \rho_i \sum_j m_j \left( \frac{A_i}{\rho_i^2} + \frac{A_j}{\rho_j^2} \right) \nabla_i W_{ij}$$

- Approx. not even O<sup>th</sup>-order consistent. **BUT**:
  - Momentum conserving
  - Error is guided by particle ordering (non-linear properties, symmetries, conservation, etc.)
  - => Leads to more stable simulations (at least in the momentum-conservation setting)
- <u>Consequence</u>:

#### Polynomial error analysis is only half the truth

- More information: [Price2012], Smoothed Particle Hydrodynamics and Magnetohydrodynamics
  - Sec. 5 "Why a bad derivative leads to good derivatives: The importance of local conservation"

# **Continuum Mechanical Models**

- How to model fluids and solids?
- Graphics applications:
  - Visual appearance
  - Macroscopic behavior
- What is <u>Continuum Mechanics</u>?
  - Continuously distributed mass
  - Object can be infinitely often divided
  - Models physical phenomena as PDE, e.g.,
    - Linear or (hyper-)elasticity
    - Navier-Stokes eq.
    - Continuum eq.



$$\rho \frac{D^2 \mathbf{x}}{Dt^2} = \nabla \cdot \mathbf{T} + \mathbf{f}_{\text{ext}}$$

- Linear momentum conservation
- $\frac{D(\cdot)}{Dt}$  denotes the material derivative
- Functions modelling  ${f T}$  are called constitutive relations

#### Lagrangian vs. Eulerian Point-of-View



#### Lagrangian Coordinates

- Identify or label material of fluid/solid
- Track material particles as they move
- Monitor changes in its properties
- Field:  $A_p^L(t)$

$$\frac{DA^L}{Dt} = \frac{\partial A^L}{\partial t}$$



#### **Eulerian Coordinates**

- Identify (or label) fixed locations
- Observe fixed location (like a sensor)
- Monitor changes in properties at these
- Field:  $A^E(t, \mathbf{x})$

$$\frac{DA^E}{Dt} = \frac{\partial A^E}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}} A^E$$