Smoothed Particle Hydrodynamics

Techniques for the Physics Based Simulation of Fluids and Solids

Rigid Bodies

Dan
KoschierJan
BenderBarbara
SolenthalerMatthias
TeschnerCCCCCRNCHETHZÜRICHWRIBURG

Graphics Research - SPH Solver

- Fluids
 - Low viscosity [Mueller 2003, Bender 2017]
 - High viscosity [Debrun 1996, Peer 15, Takahashi 15, Weiler 18]
 - Ferrofluids [Huang 2019]
- Granular materials
- Elastic solids [Solenthaler 2007, Peer 2018]
- Plastic solids [Gerszewski 2009]
- Rigid bodies [Gissler 2019]

SPH Rigid-Body Solver

- Sample surfaces with particles
- Map contact to artificial density deviation
- Compute pressure
- Pressure accelerations resolve contacts
- Pressure system differs from fluids as accelerations are applied to entire rigid bodies (sets of particles) instead of single particles

Comparison to Bullet

Formulation

- Rigid-body surface particles with artificial rest density, e.g. $\rho_r^0=1$
- Contact: $\rho_r \rho_r^0 > 0$
- Continuity equation: $\frac{\mathrm{D}\rho_r}{\mathrm{D}t} = -\rho_r \nabla \cdot \boldsymbol{v}_r$
- Time discretization at $t + \Delta t$: $\frac{\rho_r^{t+\Delta t} - \rho_r}{\Delta t} = -\rho_r \nabla \cdot \boldsymbol{v}_r^{t+\Delta t}$ - Constraint $\rho_r^{t+\Delta t} = \rho_r^0$:

$$\frac{\rho_r^0 - \rho_r}{\Delta t} = -\rho_r \nabla \cdot \boldsymbol{v}_r^{t + \Delta t}$$

Concept

- Find velocities for rigid-body particles such that $\rho_r^0 = \rho_r \Delta t \rho_r \nabla \cdot v_r^{t+\Delta t}$
- Map unknown velocities $v_r^{t+\Delta t}$ to unknown artificial pressure p_r per particle
- Pressure p_r corresponds to a pressure / contact force $F_r^{rr} = -V_r \nabla p_r$
- Forces F_r^{rr} change linear / angular momentum of the entire rigid body such that all particles have the desired velocities $v_r^{t+\Delta t}$

Illustration

SPH for the Physics Based Simulation of Fluids and Solids – 32

Reformulating the System

- One equation per particle with unknown particle velocity $-\rho_r \nabla \cdot \boldsymbol{v}_r^{t+\Delta t} = \frac{\rho_r^0 - \rho_r}{\Delta t}$
- One equation per particle with unknown body velocities

$$-\rho_r \nabla \cdot (\boldsymbol{v}_R^{t+\Delta t} + \boldsymbol{\omega}_R^{t+\Delta t} \times \boldsymbol{r}_r^t) = \frac{\rho_r^0 - \rho_r}{\Delta t}$$
$$\boldsymbol{v}_R^{t+\Delta t} = \boldsymbol{v}_R + \Delta t \frac{1}{M_R} (\boldsymbol{F}_R + \sum_k \boldsymbol{F}_k^{rr})$$
$$\boldsymbol{\omega}_R^{t+\Delta t} = \boldsymbol{\omega}_R + \Delta t \boldsymbol{I}_R^{-1} (\tau_R + (\boldsymbol{I}_R \boldsymbol{\omega}_R) \times \boldsymbol{\omega}_R + \sum_k \boldsymbol{r}_k \times \boldsymbol{F}_k^{rr})$$

Reformulating the System

- One equation per particle with unknown contact forces $-\rho_r \nabla \cdot (\Delta t \sum_k K_{rk} \boldsymbol{F}_k^{rr}) = \frac{\rho_r^0 - \rho_r}{\Delta t} \quad K_{rk} = \frac{1}{M_R} \mathbb{1} - \tilde{\boldsymbol{r}}_r \boldsymbol{I}_R^{-1} \tilde{\boldsymbol{r}}_k$ $\boldsymbol{F}_r^{rr} = V \nabla r$

$$\boldsymbol{F}_r^{rr} = -V_r \nabla p_r$$

 One equation per particle with unknown pressures

$$\rho_r \nabla \cdot \left(\Delta t \sum_k V_k K_{rk} \nabla p_k \right) = \frac{\rho_r^0 - \rho_r}{\Delta t}$$

SPH for the Physics Based Simulation of Fluids and Solids – 34

Solver

- SPH discretization of $\rho_r \nabla \cdot (\Delta t \sum_k V_k K_{rk} \nabla p_k)$
 - Two loops over all rigid particles
 - Standard SPH forms for $\nabla A_i, \nabla \cdot A_i$
- Jacobi iterations

Strong Fluid-Rigid Coupling

- Iterative rigid-body solver
- Iterative fluid solver, e.g. PCISPH, IISPH, DFSPH
- Interleaved fluid-rigid velocity update
- Rigid solver iteration updates
 predicted velocities of rigid particles
- Fluid solver iteration updates predicted velocities of fluid particles

Rising sphere Comparison to Akinci et al. 2012

our strong two-way coupling allows to use a time step 100 times larger compared to Akinci et al. 2012

Propeller pump

propeller rotates with 160rpm

our approach stably simulates fast objects with large time steps

Water gate chain elements are fully simulated using rigid-rigid contacts

up to 44M fluid particles 50M static rigid particles 2.3M dynamic rigid particles up to 90k simultaneous rigid-rigid contacts

FEDA v3.1 Showcase

Gearbox model kindly provided by Aniket Malbari [FIFTY2 Technology]