Smoothed Particle Hydrodynamics

Techniques for the Physics Based Simulation of Fluids and Solids

Part I Introduction, Foundations, Neighborhood Search

Matthias Teschner FREIBURG

Speakers

Jan Bender Barbara Solenthaler

Matthias Teschner

Dan Koschier

Dan Koschier

- Post-doctoral Researcher at UCL
 - Smart Geometry Processing Group lead by Niloy Mitra
- Research interests include
 - Physics-based simulation (deformable solids, fluids)
 - Modelling of interface phenomena
 - Cutting and fracture in solids
 - Machine learning enhanced simulation
- One of main contributors to Spins
 Devel
 - Developer of supporting libraries
 - CompactNSearch (compact hashing-based neighborhood search algorithm)
 - Discregrid (Parallel higher-order discretization on regular/adaptive grids

Jan Bender

- Professor at RWTH Aachen University
 - Head of computer animation group
- Research interests include
 - Physics-based simulation (rigid bodies, solids, fluids, ...)
 - Collision handling
 - Cutting and Fracture
 - Real-time visualization
- Founder and maintainer of
 - Open source project
 - C++ implementation of <u>many!</u> modern SPH-based simulation techniques
 - Supports fluids, deformables, and coupling with rigid bodies

Barbara Solenthaler

- Senior Research Scientist at ETH Zürich
 - Head of simulation and animation group
- Research interests include
 - Physics-based simulation
 - Artist-controllable techniques
 - Data-driven simulation
- Co-founder of Apagom AG
 - Commercial engine
 PHYSICS FORESTS
 - Real-time fluid simulation using MachineLearning
- More than 10 years of research on SPH-related topics

Matthias Teschner

- Professor at University of Freiburg
 - Head of computer graphics group
- Research interests include
 - Physics-based simulation (rigid bodies, solids, fluids, ...)
 - Rendering
 - Computational geometry
 - Cutting edge technology for fluid simulations in
 - Engineering, entertainment, art, medicine, and robotics
- Co-founder of spin-off **E** technologies

 - Concerned with development of commercial SPH solvers
- More than 10 years of research on SPH-related topics

Main Goals of this Tutorial

- Explain the basic concept of SPH and its features
 - What is SPH? For what can it be used?
 - What is not mentioned in papers?
 - What are its strengths and weaknesses?
 - What can be done/has been done in simulation?
- Showcase
 - Generality and "beauty" of the concept
 - Potential
 - Wide range of applications (with examples)
- Make state-of-the-art methods tractable
 - Methods sound often more complex than they actually are

<u>Motivate other researchers to "work on"/"use" SPH</u>

Buckling Our appro ates realistic simulation with 120k fluid particles. Moored buoy:

using

What can/can't be expected

CAN

- Practical introduction to SPH
- Brief introduction fluid/solid sim.
- Methods to realize physical phenomena
 - Modular/"as building blocks"
 - Videos/demos
- Clarification of "urban myths"
- Discussion of act. (C++) implementation
- (Some) state-of-the-art approaches
 - concepts, current challenges, ongoing trends

- Rigorous derivation of SPH concept
- Complete introduction to continuum mechanics
- Detailed discussion of results limitations of each approach
- Lecture on software architecture

CAN'T

"Urban myths"

- An SPH particle represents
 - a physical atom/molecule
 - a droplet
 - a grain (e.g., in sand simulation)
- SPH is better than Eulerian approaches
- Eulerian approaches are better than SPH
- "Proper" engineering CFD methods are grid-based
- SPH is (only) 0th-order consistent

Outline

<u>Block 1</u> (9:00 - 10:30)

- Foundations of SPH
- Governing equations
- Time integration
- <u>Example</u>: Our first SPH solver
- Neighborhood Search

Coffee break (30min)

Block 2 (11:00 - 12:30)

- Enforcing incompressibility
 - State equation solvers
 - Implicit pressure solvers
- Boundary Handling
 - Particle-based methods
 - Implicit approaches

Lunch break (60min)

Coffee break (30min)

Block 4 (15:30 - 17:00)

- Deformable solids
- Rigid body simulation
 - Dynamics and coupling
- Data-driven/ML techniques
- Summary and conclusion

Foundations of SPH

What is SPH?

II A mesh-free method for the discretization of II functions and partial differential operators

- Functions are discretized into
 - Samples equipped with kernel function *W*
- Approximates/discretizes differential operators
- Interpretation of SPH sample
 - Math.: Coefficients "controling" approx.
 - Phys.: Particle "carrying" quantities
- Useful to simulate continuum media
 - conservational properties
 - greatly handles topological changes
 - algorithms parallelize well
 - good for advection-type/transp. problems

SPH Discretization Pipeline PDE: $\nabla \times \mathbf{f} + \nabla g = \mathbf{h}(f, g)$

Continuous Approximation

• Dirac-
$$\delta$$
 function $\delta(\mathbf{r}) = egin{cases} \infty & ext{if } \mathbf{r} = \mathbf{0} \\ 0 & ext{otherwise} \end{cases}, \int \limits_{\mathbb{R}^d} \delta(\mathbf{x}) dv =$

• Dirac- δ identity

$$A(\mathbf{x}) = (A * \delta)(\mathbf{x}) = \int \limits_{\mathbb{R}^d} A(\mathbf{x}') \, \delta(\mathbf{x} - \mathbf{x}')$$

• Approximation with Gaussian kernel

$$\mathcal{N}(\mathbf{x};\mu,\sigma^2),\ \lim_{\sigma
ightarrow 0}\mathcal{N}(\mathbf{x};0,\sigma^2)=\delta(\mathbf{x})$$

- Good choice because normalized, BUT: $\operatorname{supp}(\mathcal{N}) = \mathbb{R}^d$
- Instead use "some other" kernel: $W: \mathbb{R}^d \times \mathbb{R}^+ \to \mathbb{R}$ such that

$$A(\mathbf{x}) \approx (A * W)(\mathbf{x})$$
 Controls variance

Continuous Approximation - Kernel

• What's a good choice for the kernel $W: \mathbb{R}^d imes \mathbb{R}^+ o \mathbb{R}$?

Desired properties

• Kernel construction out of scope of this tutorial. See [LL10] for details.

Essential for valid approximation $A(\mathbf{x}) pprox (A st W)(\mathbf{x})$

→ (Optional) Ensures exclusively positive weighting, helps meeting physical constraints, e.g. $ho \geq 0$ → (Optional) Allows 1st-order consistent approx.

→ (Optional) Drastically improves efficiency.

Continuous Approximation - Kernel

- Cubic spline kernel; typical choice for $W: \mathbb{R}^d imes \mathbb{R}^+ o \mathbb{R}$

$$W({f r},h) = \sigma_d egin{cases} 6(q^3-q^2)+1 & {
m for} \ 0 \leq q \leq rac{1}{2} \ 2(1-q)^3 & {
m for} \ rac{1}{2} < q \leq 1 \ 0 & {
m otherwise} \ \end{array} \ {
m with} \ q = rac{1}{h} \|{f r}\|$$

- *h* denotes "smoothing length"
 - Controls support domain radius
- σ_d normalization constant
- C^2 -continuous
- Good choice? At least:

Kernel fulfills all conditions!

5.6

Continuous Approximation - Consistency

- How accurate is approximation?
- Polynomial error analysis:

$$(A * W)(\mathbf{x}) = \int \left[A(\mathbf{x}) + \nabla A |_{\mathbf{x}} \cdot (\mathbf{x}' - \mathbf{x}) + \frac{1}{2} (\mathbf{x}' - \mathbf{x}) \cdot \nabla \nabla A |_{\mathbf{x}} (\mathbf{x}' - \mathbf{x}) + \mathcal{O}(||\mathbf{r}||^3) \right] W(\mathbf{x} - \mathbf{x}', h) dv'$$

$$= A(\mathbf{x}) \int W(\mathbf{x} - \mathbf{x}') dv' + \nabla A |_{\mathbf{x}} \cdot \int (\mathbf{x} - \mathbf{x}') W(\mathbf{x} - \mathbf{x}') dv' + \mathcal{O}(||\mathbf{r}||^2)$$

$$= 1$$

$$= 0$$
If kernel
normalized
If kernel
symmetric

- Normalized, symmetric kernels lead to (at least) 1st-order consistency
- Specialized kernels for higher-order consistency can be constructed

SPH Discretization Pipeline PDE: $\nabla \times \mathbf{f} + \nabla g = \mathbf{h}(f, g)$

Field Discretization

- Continuous approximation (convolution) involves integral
 - Analytic evaluation generally not possible
 - Numerical integration required

Field Discretization - Consistency

• What are we sacrificing?

$$\int \frac{A(\mathbf{x}')}{\rho(\mathbf{x}')} W(\mathbf{x} - \mathbf{x}', h)$$

• Polynomial error analysis:

$$\langle A
angle = A_i \sum_j rac{m_j}{
ho_j} W_{ij} + \left.
abla A
ight|_{\mathbf{x}_i} \cdot \sum_j rac{m_j}{
ho_j} (\mathbf{x}_j - \mathbf{x}_i) W_{ij} + \mathcal{O}(\|\mathbf{r}\|^2)$$

• For 1st-order consistency:

$$\sum_j rac{m_j}{
ho_j} W_{ij} = 1$$

$$rac{W_j}{W_j}(\mathbf{x}_j-\mathbf{x}_i)W_{ij}=\mathbf{0}$$

Field Discretization - Consistency

• What are we sacrificing?

For Oth-order

- => Particle ordering important
- => Almost never satisfied

Consequence: Without further treatment we even lose 0th-order consistency

- Is this a problem?
 - **Not really!** Approximation accuracy usually still high!
 - Alternatively: order recovery (normalization, matrix-inversion)
- Common practice:
 - Graphics community: Often ignored. Visual quality still good.
 - Engineering community: Similar. Sometimes order recovery
 - Generally: Depends...
- Polynomial error is only half of the truth! We'll see that later

 $\sum_j rac{m_j}{
ho_j} (\mathbf{x}_j - \mathbf{x}_i) W_{ij} = \mathbf{0}$

For 1st-order

Field Discretization - Example

- Setting:
 - Rectangular domain discretized into particles
 - Test function sampled on particles
 - Discretization quality is tested along red line
- Results despite concistency order

Mass Density Estimation

- Density does not have to be carried by particles
 - Can be recovered/estimated
- Recall $\langle A(\mathbf{x}_i)
 angle = \sum_{j \in \mathcal{F}} A_j rac{m_j}{
 ho_j} W_{ij}$

• Plugging in density field directly yields:

$$ho(\mathbf{x}_i) pprox \sum_{j \in \mathcal{F}} m_j W_{ij}$$

SPH Discretization Pipeline PDE: $\nabla \times \mathbf{f} + \nabla g = \mathbf{h}(f, g)$

Discrete Differential Operators

 Direct discretization: 	$ abla A_ipprox$
 Derivative "shifts" to kernel function 	$ abla \mathbf{A}_i$?
 Very simple Kernel gradient can be reused 	$ abla \cdot \mathbf{A}_i$?

III Direct method leads to unstable simulations

- Improved variants:
 - Difference formula
 - Symmetric formula

 $abla A_i pprox \sum_j A_j rac{m_j}{
ho_j}
abla W_{ij}$ $pprox \sum_j \mathbf{A}_j rac{m_j}{
ho_j} \otimes
abla W_{ij}$ $pprox \sum_j \mathbf{A}_j rac{m_j}{
ho_j} \cdot
abla W_{ij}$ $abla imes \mathbf{A}_i pprox - \sum_j \mathbf{A}_j rac{m_j}{
ho_j} imes
abla W_{ij}$

Difference Formula

- Direct gradient $\nabla A_i \approx \sum_j A_j \frac{m_j}{\rho_j} \nabla W_{ij}$
- Polynomial error analysis reveals:

$$\langle
abla 1
angle = \sum_j rac{m_j}{
ho_j}
abla W_{ij} = oldsymbol{0}$$

For 0th-order

• Oth-order can be recovered by subtracting first error term:

$$abla A_i pprox \langle
abla A_i
angle - A_i \langle
abla 1
angle = \sum_j rac{m_j}{
ho_j} (A_j - A_i)
abla_i W_{ij}$$
 (Difference formula)

• 1th-order can be recovered by small matrix inversion:

$$abla A_i pprox \mathbf{L}_i \left(\sum_j rac{m_j}{
ho_j} (A_j - A_i)
abla_i W_{ij}
ight) \qquad \mathbf{L}_i = \left(\sum_j rac{m_j}{
ho_j}
abla_i W_{ij} \otimes (\mathbf{x}_j - \mathbf{x}_i)
ight)^{-1}$$

$$rac{m_j}{
ho_j}(\mathbf{x}_j-\mathbf{x}_i)
abla W_{ij}=\mathbb{I}$$

For 1st-order

Symmetric Formula

• Gradient derived from discrete Lagragian and density estimate in hydrodynamic systems:

$$egin{split}
abla A_i &pprox
ho \left(rac{A_i}{
ho_i^2} \langle
abla
ho
angle + \langle
abla \left(rac{A_i}{
ho_i}
ight)
angle
ight) \ &=
ho_i \sum_j m_j \left(rac{A_i}{
ho_i^2} + rac{A_j}{
ho_j^2}
ight)
abla_i W_{ij} \end{split}$$

- Approximation not even 0th-order consistent. **BUT**:
 - momentum conserving
 - error is guided by <u>particle ordering</u> (non-linear properties, symmetries, conservation, etc.)
 - = > Leads to more stable simulations (at least in the hydrodynamic setting)
- <u>Consequence:</u>

Polynomial error analysis is only half the truth!

- More information: [Price 2012], Smoothed Particle Hydrodynamics and Magnetohydrodynamics
 - Sec. 5 "Why a bad derivative leads to good derivatives: The importance of local conservation"

(Symmetric formula)

Discrete Laplace Operator

- Direct Laplacian
 - Again: Rather bad approximation
- Improved version by Brookshaw [Bro85]
 - Is of "difference type"

- Even improved version not optimal for vector Laplacians
 - Derived forces (e.g., viscosity force) not momentum conserving
 - If field is divergence-free momentum conserving approximation can be made!

$$ext{if }
abla \cdot \mathbf{A} = 0 \qquad \Rightarrow \qquad
abla^2 \mathbf{A}_i = 2(d+2) \sum_j rac{m_j}{
ho_j} rac{\mathbf{A}_{ij}}{\|\mathbf{r}_i\|}$$

 $abla^2 A_i pprox \sum rac{m_j}{
ho_j} A_j
abla_i^2 W_{ij}$

 $abla^2 A_i pprox - \sum_j rac{m_j}{
ho_i} A_{ij} rac{2 \|
abla_i W_{ij} \|}{\| \mathbf{r}_{ij} \|}$

Quick Recap

- SPH discretizes
 - (spatial) functions
 - differential operators (PDEs)
- An SPH particle is
 - a coefficient in the approximation
 - a sample that "carries" a field quantity

- Symmetric, normalized kernels enforce <u>at least 1st-order consistency</u> in cont. approximation
- Oth-order consistency not guaranteed in particle discretiztion
 - Accuracy still good in practice
 - Local conservation properties sometimes more important than consistency orders
- Specialized gradient operators
 - Difference-type operator for 0th/1st-order consistency
 - Symmetric gradient for local conservation properties (useful for physical forces)

Continuum Mechanical Models Governing Equations

Governing Equations

- How to model fluids and solids?
- Graphics applications:
 - Visual appearance
 - Mostly governed by macroscopic behavior
- Typically continuum mechanical approach
- What is <u>Continuum Mechanics</u>?
 - Continuously distributed mass
 - Object can be infinitely often divided
 - Models physical phenomena as PDE
 - Linear elasticity, Navier-Stokes-Equations, etc.

Physical particles (~discrete mass points)

Continuum (distributed mass)

Continuity Equation

• Describes evolution of object's mass density over time

$$rac{D
ho}{Dt} = -
ho(
abla\cdot\mathbf{v})$$

- $\frac{D}{Dt}(\cdot)$ denotes material derivative (more on the next slide)
- Important for incompressible materials
 - Constraint:

$$rac{D
ho}{Dt} = 0 \qquad \Leftrightarrow \qquad
abla \cdot \mathbf{v}$$

• Should be explicitly fulfilled in case of incompressible materials

= 0

Lagrangian vs. Eulerian Coordinates

Lagrangian Coordinates

- Identify (or label) a material of the fluid
- Track material particle as it moves
- Monitor change in its properties
- Field: $A_p^L(t)$

$$\frac{DA^L}{Dt} = \frac{\partial A^L}{\partial t}$$

SPH advantageous in Lagrangian setting

Eulerian Coordinates

- Identify (or label) fixed location
- Observe fixed location (like sensor)
- Monitor change in properties during flow
- Field: $A^E(t,\mathbf{x})$

$$rac{DA^E}{Dt} = rac{\partial A^E}{\partial t} + \mathbf{v} \cdot
abla_{\mathbf{x}} A^E$$

Linear Momentum Conservation

• Local balance law:

 $ho rac{D^2 {f x}}{Dt^2} =
abla \cdot {f T} + {f f}_{
m ext}$

- ${f T}$ denotes Stress tensor
 - 2nd-order tensor [N/m^2]
- Often called: "Equation of Motion"
- Interpretation:
 - Generalization of Newtons 2nd law of motion for continua
- Completely material-independent
 - Holds for fluids and solids (and more)
 - Material behavior is encoded in stress tensor

Modelling Fluids

- How does stress tensor look like for a fluid?
- We need a so-called constitutive model!
 - Relates stress with strain, velocity, temperature, etc.
- Newtonian fluid:
 - Stress as a function of pressure and velocity

$$\mathbf{T} = -p\mathbb{I} + \mu (
abla \mathbf{v} +
abla \mathbf{v}^T)$$

- First term: resistance to compression
- Second term: viscosity
- Equation of motion for incompressible Newtonian fluid:

 $ho rac{D \mathbf{v}}{D t} = -
abla p + \mu
abla^2 \mathbf{v} + \mathbf{f}_{\mathrm{ext}}$ (Navier-Stokes equation)

Modelling (Elastic) Solids

- How does stress tensor look like for an elastic solid?
- Which constitutive model now?
 - We need relation between stress and deformation/strain!
- Linear Elasticity:
 - Stress as a linear function of strain measure

$\mathbf{T} = \mathbf{C} : \boldsymbol{\varepsilon}$

- Can be interpreted as higher-dimensional spring
- In isotropic case:

 $\mathbf{C} = \mathbf{C}(E,\nu)$

- Function of Young's modulus and Poisson ratio
- More complex non-linear relations possible

M

(Generalized Hooke's law)

Numerical Solving - Recipe

1. Identify model - Constitutive model (fluid/solid/...), strain measure, incompressible?, ...

- 2. Split operators for simplification (see next slide)
- 3. Discretize fields and <u>spatial</u> differential operators using SPH
- 4. Discretize temporal derivatives (time integration)

Solving - Step 1/2 - Model/Operator Split.

• Step 1, Final mixed initial-boundary value, e.g., weakly compressible Newtonian fluid

• Step 2, Operator splitting

1. Update **v** by solving $\frac{D\mathbf{v}}{Dt} = \frac{\mu}{\rho}\nabla^2\mathbf{v} + \frac{1}{\rho}\mathbf{f}_{ext}$ 2. Determine abla p using state equation $p=k(
hoho_0)$ 3. Update **v** by solving $\frac{D\mathbf{v}}{Dt} = -\frac{1}{o}\nabla p$ 4. Update **x** by solving $\frac{Dx}{Dt} = \mathbf{v}$

Initial conditions Boundary conditions $\mathbf{x}(t_0) = x_0$ $\mathbf{v}\cdot\mathbf{n}\geq 0 ext{ on } \Gamma$ $\mathbf{v}(t_0) = \mathbf{v}_0$

Solving - Step 3 - Spatial Discretization • Sample fields using SPH particles $\mathbf{x}, \mathbf{v}, m$ $ho_i = \sum_j m_j W_{ij}$ • Use reconstruction for density field ∇, ∇^2 • Discretize (spatial) differential operators \mathbf{n} 1. Update \mathbf{v}_i by solving $\frac{D\mathbf{v}_i}{Dt} = \frac{\mu}{m_i} \sum_j \frac{m_j}{\rho_i} \mathbf{v}_{ij} \frac{2\|\nabla_i W_{ij}\|}{\|\mathbf{r}_{ij}\|} + \frac{1}{m_i} \mathbf{F}_{ext}$ Γ

2. Determine \mathbf{F}_i^p using state equation $p_i = k(\rho_i - \rho_0)$ $\mathbf{F}_i^p = \sum_j m_j \left(rac{p_i}{\rho_i^2} + rac{p_j}{\rho_i^2} \right)
abla_i W_{ij}$

3. Update \mathbf{v}_i by solving $\frac{D\mathbf{v}_i}{Dt} = -\frac{1}{m_i}\mathbf{F}_i^p$

4. Update \mathbf{x}_i by solving $\frac{D\mathbf{x}_i}{Dt} = \mathbf{v}_i$

Solving - Step 4 - Time Discretization

- Decide for time integration scheme
 - Many schemes exist, e.g., Euler type, Runge-Kutta, BDF, Rosenbrock, Leapfrog, ...
- Let's use symplectic Euler

1. Update
$$\mathbf{v}_i$$
 by solving $\mathbf{v}_i^* = \mathbf{v}_i + \Delta t (\frac{\mu}{m_i} \sum_j \frac{m_j}{\rho_j} \mathbf{v}_{ij} \frac{2 \|\nabla_i W_{ij}\|}{\|\mathbf{r}_{ij}\|} +$

2. Determine \mathbf{F}_{i}^{p} using state equation $p_{i} = k(\rho_{i} - \rho_{0})$

3. Update \mathbf{v}_i by solving $\mathbf{v}_i(t + \Delta t) = \mathbf{v}_i^* - \frac{\Delta t}{m} \mathbf{F}_i^p$

4. Update \mathbf{x}_i by solving $\mathbf{x}_i(t + \Delta t) = \mathbf{x}_i(t) + \Delta t \mathbf{v}_i(t + \Delta t)$

 $\frac{1}{m_i}\mathbf{F}_{\text{ext}}$

 $\mathbf{F}_{i}^{p} = \sum_{j} m_{j} \left(rac{p_{i}}{
ho_{i}^{2}} + rac{p_{j}}{
ho_{i}^{2}}
ight)
abla_{i} W_{ij}$

Solving - Final algorithm

for all *particle* i do Reconstruct density ρ_i at \mathbf{x}_i with Eq. (11) for all *particle* i do Compute $\mathbf{F}_{i}^{\text{viscosity}} = m_i v \nabla^2 \mathbf{v}_i$, *e.g.*, using Eq. (23) $\mathbf{v}_i^* = \mathbf{v}_i + \frac{\Delta t}{m_i} (\mathbf{F}_i^{\text{viscosity}} + \mathbf{F}_i^{\text{ext}})$ for all particle i do Compute $\mathbf{F}_i^{\text{pressure}} = -\frac{1}{0}\nabla p$ using state eq. and Eq. (19) for all particle i do $\mathbf{v}_i(t + \Delta t) = \mathbf{v}_i^* + \frac{\Delta t}{m_i} \mathbf{F}_i^{\text{pressure}}$ $\mathbf{x}_i(t + \Delta t) = \mathbf{x}_i + \Delta t \mathbf{v}_i(t + \Delta t)$

Solving - Remaining Questions

- What about boundary handling?!
- Use "HACK" for now:
 - Use static fluid particles on boundary
 - Pressure force will "push" them inside

- What is a "good" time step size?
 - As large as possible for speed
 - As small as necessary for stability/accuracy
 - CFL condition as upper bound:
 - Scaling heuristically chosen $\lambda pprox 0.4$
 - Adapt time step during simulation

 $\mathbf{v} \cdot \mathbf{n} \geq 0 ext{ on } \Gamma$

$\Delta t \leq \lambda rac{ ext{particle diameter}}{ ext{max}_i extbf{v}_i}$

Transmiss. 12 The statistic Sec. then ended at a second The summer of the The second second and the second 101030-002-012-01 A here share [resting 1 the state of the States and States frank anothers Second Sector Sector Sector Line Anne. A REAL PROPERTY. and it shall never through a part of the Contract of the COLUMN TWO IS NOT CARL MARKET -The local division in 1000 . . Color State a the second

Neighborhood Search

Motivation

- Lots of sums over particles of type $\sum_j (\cdot) W(\mathbf{x}_i \mathbf{x}_j, h) \dots$
 - If computed for each particle $\Rightarrow \mathcal{O}(n^2)$
 - Can we optimize?
- Recap:
 - (Optional) Compact support kernel condition

$$W(\mathbf{r},h)=0 ext{ for } \|\mathbf{r}\|\geq ar{h}$$

- Kernel (and derivatives) vanishes outside support radius
- Assuming a particle has on average k particles in radius \overline{h}
- If we know adjacencies

 \Longrightarrow Runtime complexity can be reduced to $\mathcal{O}(kn)$

Grid-based Neighborhood Search

- How can we efficiently find "neighbors"?
 - Compare all ? $\Rightarrow \mathcal{O}(n^2)$

- Idea: Place grid with m cells over domain
 - Choose cell size *h*
 - Neighbors <u>must</u> lie within
 - same
 - or (26) neighboring cells
 - Sort particles into grid/find neighbors $\Rightarrow \mathcal{O}(m)$

• Many cells empty! => Memory intensive

Spatial Hashing

- Sparse representation
 - Store only populated cells
 - Use <u>hash map</u>: (i,j,k) -> [p1, p2, ...]
 - Suitable hash function

 $hash(i, j, k) = \left[\left(p_{1}i\right) \operatorname{XOR}\left(p_{2}j\right) \operatorname{XOR}\left(p_{3}k\right)
ight]$

J

- $p_i :=$ large prime numbers
- => Much lower memory requirements
- <u>Cache-hit rate suboptimal</u>
 - Neighboring cells are not close in memory

Compact Hashing [IABT11]

- Only store handles to secondary data structure in hash table
 - Sort cells in secondary structure
 - $\circ~$ using space-filling z-curve

• => Higher cache efficiency

Hashtable

Cell-wise particle indices

Compact Hashing [IABT11]

- Useful to sort particles along Z-curve as well
 - Sort expensive
 - Particles move "slowly"
 - Only sort every 1000th time step (or similar)

Compact Hashing [IABT11]

- Benchmark (130k particles)
- Times in ms

			[IABT11]
method	construction	query	total
basic uniform grid	25.7 (27.5)	38.1 (105.6)	63.8 (133.1)
index sort [Gre08]	35.8 (38.2)	29.1 (29.9)	64.9 (77.3)
Z-index sort	16.5 (20.5)	26.6 (29.7)	43.1 (50.2)
spatial hashing	41.9 (44.1)	86.0 (89.9)	127.9 (134.0)
compact hashing	8.2 (9.4)	32.1 (55.2)	40.3 (64.6)

Compact Hashing^[IABT11]

- (Parallel) reference implementation:
 - supports independent point sets, activation table, z-ordering, ...

• Simple C++ implementation using STL hashmap:

```
1 struct SpatialHasher {
       std::size t operator()(HashKey const &k) const {
 2
           return 73856093 * k.k[0] ^ 19349663 * k.k[1] ^ 83492791 * k.k[2];
 3
       }
 4
 5 };
 6
 7 class NeighborhoodSearch {
 8 ...
 9 private:
10
       std::unordered map<HashKey, CellID, SpatialHasher> m map;
11
       std::vector<ParticleIDArray> m particle ids per cell;
12
13 };
```

https://github.com/InteractiveComputerGraphics/CompactNSearch

Outline

<u>Block 1</u> (9:00 - 10:30)

- Foundations of SPH
- Governing equations
- Time integration
- <u>Example</u>: Our first SPH solver
- Neighborhood Search

Coffee break (30min)

Block 2 (11:00 - 12:30)

- Enforcing incompressibility
 - State equation solvers
 - Implicit pressure solvers
- Boundary Handling
 - Particle-based methods
 - Implicit approaches

Lunch break (60min)

Coffee break (30min)

Block 4 (15:30 - 17:00)

- Deformable solids
- Rigid body simulation
 - Dynamics and coupling
- Data-driven/ML techniques
- Summary and conclusion