Smoothed Particle Hydrodynamics

Dan
Koschier

Techniques for the Physics Based Simulation of Fluids and Solids

Introduction, Foundations, Neighborhood Search

Jan
Bender

1

Part |

Barbara
Solenthaler

ETH:zurich

A

Mattﬁi-&s
Teschner
]
UNI

FRE:BU RG

Jan
Bender

Speakers

Barbara
Solenthaler

Matthias
Teschner

Dan
Koschier

.

Dan Koschier

e Post-doctoral Researcher at UCL
= Smart Geometry Processing Group lead by Niloy Mitra

e Research interests include

= Physics-based simulation (deformable solids, fluids)
= Modelling of interface phenomena

= Cutting and fracture in solids

= Machine learning enhanced simulation

lis
e One of main contributors to S las
= Developer of supporting libraries

o CompactNSearch (compact hashing-based neighborhood
search algorithm)

o Discregrid (Parallel higher-order discretization on
regular/adaptive grids

Jan Bender

e Professor at RWTH Aachen University
= Head of computer animation group

e Research interests include

= Physics-based simulation (rigid bodies, solids, fluids, ...)
= Collision handling

= Cutting and Fracture

= Real-time visualization

e Founder and maintainer of S I 15

. las
= Open source project
= C++ implementation of many! modern SPH-based
simulation techniques
= Supports fluids, deformables, and coupling with rigid bodies

2

.3

Barbara Solenthaler

e Senior Research Scientist at ETH Zurich
= Head of simulation and animation group

e Research interests include

= Physics-based simulation
= Artist-controllable techniques
= Data-driven simulation

e Co-founder of Apagom AG
= Commercial engine PHYSICS FORESTS

= Real-time fluid simulation using MachinelLearning

e More than 10 years of research on SPH-related topics

Matthias Teschner

e Professor at University of Freiburg
= Head of computer graphics group

e Research interests include

= Physics-based simulation (rigid bodies, solids, fluids, ...)
= Rendering

= Computational geometry
= Cutting edge technology for fluid simulations in

o Engineering, entertainment, art, medicine, and robotics

e Co-founder of spin-off EE technologies
= Concerned with development of commercial SPH solvers

e More than 10 years of research on SPH-related topics

.5

Main Goals of this Tutorial

e Explain the basic concept of SPH and its features

= What is SPH? For what can it be used?

= What is not mentioned in papers?

= What are its strengths and weaknesses?

= \WWhat can be done/has been done in simulation?

Buckling

Our '{'prw ates realis |I':'.'_'
anlH|1 TN Hnﬂih
with 120k Hll’iH

e Showcase

= Generality and "beauty" of the concept
= Potential
= Wide range of applications (with examples)

e Make state-of-the-art methods tractable

= Methods sound often more complex than they
actually are

e Motivate other researchers to "work on"/"use" SPH

https://s3.amazonaws.com/media-p.slid.es/videos/1037989/q8LylHm5/turb.mp4
https://s3.amazonaws.com/media-p.slid.es/videos/1037989/1jEVLzXu/visc.mp4
https://s3.amazonaws.com/media-p.slid.es/videos/1037989/A8iWKewh/bouy.mp4
https://s3.amazonaws.com/media-p.slid.es/videos/1037989/8AZ-RETC/defo.mp4

What can/can't be expected

CAN

Practical introduction to SPH

Brief introduction fluid/solid sim.

Methods to realize physical phenomena

= Modular/"as building blocks"
= Videos/demos

Clarification of "urban myths"
Discussion of act. (C++) implementation
(Some) state-of-the-art approaches

m concepts, current challenges,
ongoing trends

CAN'T

Rigorous derivation of SPH concept

Complete introduction to continuum
mechanics

Detailed discussion of results limitations of
each approach

Lecture on software architecture

.2

"Urban myths"

e An SPH particle represents

= 3 physical atom/molecule
= g droplet
m 3 grain (e.g., in sand simulation)

e SPH is better than Eulerian approaches
e Eulerian approaches are better than SPH

* "Proper" engineering CFD methods are grid-based

e SPH is (only) Oth-order consistent

Outline
Block 1 (9:00 - 10:30) Lunch break (60min) Block 3 (13:30 - 15:00)

e Multiphase fluids
e \iscosity

Foundations of SPH
Governing equations

e Vorticity and turbulence

e Demo: S lis
las

Coffee break (30min) Coffee break (30min)

Block 4 (15:30 - 17:00)

Deformable solids
Rigid body simulation

Time integration
Example: Our first SPH solver
Neighborhood Search

Block 2 (11:00 - 12:30)

e Enforcing incompressibility

= State equation solvers

= Dynamics and coupling

Data-driven/ML techniques
Summary and conclusion

= |mplicit pressure solvers
e Boundary Handling

m Particle-based methods
= |mplicit approaches

Foundations of SPH

What is SPH?

11 A mesh-free method for the discretization of 11
functions and partial differential operators

Functions are discretized into
= Samples equipped with kernel function W
Approximates/discretizes differential operators

Interpretation of SPH sample

= Math.: Coefficients "controling" approx.
= Phys.: Particle "carrying" quantities

Useful to simulate continuum media

= conservational properties

» greatly handles topological changes

= algorithms parallelize well

= good for advection-type/transp. problems

SPH Discretization Pipeline

PDE: V xf+ Vg=h(f,g)

moothing/
e ™ Smoothing - N |
: . Kernel : Numerical
Field quantities/ . Continuous
: convolution L approx.
functions — approximations .

x,v,f,qg,... xxsW,gxW,...
U J g J
Boundary
conditions +
solving
2))
(Partial) :
Differential Numerlcal
solution
operators

\ J _ J

Continuous Approximation

. p)
0 otherwise
]Rd

oo itr=20
e Dirac-¢9 function 5(1') — { /5(X)d’0 =1

e Dirac-9 identity 2.01
Ax) =(Ax*6)(x) = /A(X') §(x — x')dv
Rd CGE_;1.5-
e Approximation with Gaussian kernel S
N (1, 02), Tim N (x; 0, 0%) = 3(x)
o—0 0.5+
e Good choice because normalized, BUT: supp(N) = R? 00

e [nstead use "some other" kernel: W .- RI«x R+ - R

such that T

A(x) = (A* W)(x) variance

S 3 3 3 9 3
R NN NN NN

) gl,_. 5|H e LN i N

Continuous Approximation - Kernel

e What's a good choice for the kernel W : R x Rt — R ?

Desired properties

/ !
[RdW(r,h)dv =1

. / L
hl/linOW(r,h) = 3&(r)

(normalization condition)
(Dirac-0 condition)

W(r,h) >0

(positivity condition)

W(r,h) = W(—r,h)

(symmetry condition)

W(r,h) = 0 for ||r|| > A,

(compact support condition)

Essential for valid approximation A(x) ~ (A x W)(x)

—» (Optional) Ensures exclusively positive weighting,
helps meeting physical constraints, e.g. p > 0

—» (Optional) Allows 1st-order consistent approx.

—» (Optional) Drastically improves efficiency.

e Kernel construction out of scope of this tutorial. See [LL10] for details.

Continuous Approximation - Kernel

8 - — h=
6+ .
e Cubic spline kernel; typical choice for W : R x Rt — R = ::_:
= 4 “
6(¢° —¢°) +1 for0<g< % d = S
W(I',h):O'd 2(1_q)3 for%<q§1 0/] \\\

0 otherwise
with ¢ = |||

e h denotes "smoothing length"

= Controls support domain radius

* g4 normalization constant
* (¢2-continuous

e Good choice? At least:

Kernel fulfills all conditions! Ed

0.25

0.50

5.

Continuous Approximation - Consistency

e How accurate is approximation?
e Polynomial error analysis:

(A+xW)(x) = / [A(x) + VA, - (x' —x) + %(x' —x)- VVA| (x' —x)+ O(HI'H?’)] W(x —x', h)dv'

— AG) | W= x)del + VA - [=)W ax = %)l + O)

If kernel If kernel
normalized symmetric

e Normalized, symmetric kernels lead to (at least) 1st-order consistency

e Specialized kernels for higher-order consistency can be constructed

SPH Discretization Pipeline

PDE: V xf+ Vg=h(f,g)

moothing/
e ™ Smoothing - N |
: . Kernel : Numerical
Field quantities/ . Continuous
: convolution L approx.
functions — approximations .

x,v,f,qg,... xxsW,gxW,...
U J g J
Boundary
conditions +
solving
2))
(Partial) :
Differential Numerlcal
solution
operators

\ J _ J

Field Discretization

e Continuous approximation (convolution) involves integral

= Analytic evaluation generally not possible
= Numerical integration required

A /
e Requires discretization (A x W)(x;) = / ()‘:,)I/V(:x:z —x',h)p(x")dv'
p(X) T

jer P

e Monte-Carlo-like numerical integration

e Each particle carries

= Field sample
= Particle mass
= Density not necessary

5.

9

Field Discretization - Consistency

e What are we sacrificing?
ﬁ

e Polynomial error analysis:

m™m 5 m™m ;
(4) = Ai) o Wi+ VAL N T (x; — %)W + O(|e]1?)
. J
J

e For 1st-order consistency:

m; m;
> Wi =1 >k —x))W,; =0
i P j

Field Discretization - Consistency

e What are we sacrificing? E : Y Wij =1 E —,0 (Xj — Xz’)VVij =0
j j FI
For Oth-order For 1st-order

e => Particle ordering important
e => Almost never satisfied

Consequence: Without further treatment we even lose Oth-order consistency

e |s this a problem?

= Not really! Approximation accuracy usually still high!
= Alternatively: order recovery (normalization, matrix-inversion)

e Common practice:

= Graphics community: Often ignored. Visual quality still good.
= Engineering community: Similar. Sometimes order recovery
= Generally: Depends...

e Polynomial error is only half of the truth! We'll see that later

.1

Field Discretization - Example

. 24 —— Ai(x,y)=3(x+y) —a— (A7)
* Setting: Ay = b2yt -1 (42)
= Rectangular domain discretized into (| T Aslxy) = sinbreosdy
particles

= Test function sampled on particles
= Discretization quality is tested along red

Approximation
-

line
e Results despite concistency order ~19
— A1 - (A1)
0.751 Az = (Az)
— Ay - (Ag)
S
£ 0.00q e
—0.75 -
0 1 3 4

Mass Density Estimation

e Density does not have to be carried by particles
= Can be recovered/estimated

e Recall (A(x;)) = ZAJ'@I/V’U
jer P

e Plugging in density field directly yields:

p(xi) ~ ijWz‘j

jeF

SPH Discretization Pipeline

PDE: V xf+ Vg=h(f,g)

moothing/
e ™ Smoothing - N |
: . Kernel : Numerical
Field quantities/ . Continuous
: convolution L approx.
functions — approximations .

x,v,f,qg,... xxsW,gxW,...
U J g J
Boundary
conditions +
solving
2))
(Partial) :
Differential Numerlcal
solution
operators

\ J _ J

Discrete Differential Operators

e Direct discretization:
m Derivative "shifts" to kernel function

e Very simple
e Kernel gradient can be reused

e Improved variants:

= Difference formula
= Symmetric formula

Difference Formula

e Direct gradient VA; ~ ZA].@VW@

j Pi

e Polynomial error analysis reveals:

v1) =Y "yw, =0 N (x; — %) VW, = 1
7 P - Pi
For Oth-order For 1st-order
e Oth-order can be recovered by subtracting first error term:
VA; = (VA;) — A;(V1) = Z @(Aj — A;))V, W, (Difference formula)

o P

e 1th-order can be recovered by small matrix inversion:

-1
VA; = L (Z @(Aj — Ai)viVVz'j) L, = (Z ﬁvz‘Wz’j ® (x5 — Xz))

;P

Symmetric Formula

e Gradient derived from discrete Lagragian and density estimate in hydrodynamic systems:

VA~ p(%(Ve) +(V (%))
S (34)

(Symmetric formula)

z 10]

e Approximation not even Oth-order consistent. BUT:

= momentum conserving
= error is guided by particle ordering (non-linear properties, symmetries, conservation, etc.)
m => | eads to more stable simulations (at least in the hydrodynamic setting)

e Conseqguence:

Polynomial error analysis is only half the truth!

e More information: [Price 2012], Smoothed Particle Hydrodynamics and Magnetohydrodynamics
= Sec. 5 "Why a bad derivative leads to good derivatives: The importance of local conservation"

17

Discrete Laplace Operator

e Direct Laplacian V2A, ~ Z ﬁAjV?Wz’j
» Again: Rather bad approximation Pj

e Improved version by Brookshaw [Bro85] V24, ~ — Y ﬁAHZHVz'Win
= |s of "difference type" Z T op; Y |||

e Even improved version not optimal for vector Laplacians

= Derived forces (e.g., viscosity force) not momentum conserving
= |f field is divergence-free momentum conserving approximation can be made!

m; Aij - Ty

pi |Iri;l?

ifV-A=0 = V2A;=2(d+2))»_

J

Vz' Wij

.18

Quick Recap

SPH discretizes

= (spatial) functions
= differential operators (PDES)

An SPH particle is

= 3 coefficient in the approximation
= 3 sample that "carries" a field quantity

Symmetric, normalized kernels enforce at least 1st-order consistency in cont. approximation
Oth-order consistency not guaranteed in particle discretiztion

= Accuracy still good in practice
= | ocal conservation properties sometimes more important than consistency orders

Specialized gradient operators

= Difference-type operator for Oth/1st-order consistency
= Symmetric gradient for local conservation properties (useful for physical forces)

.19

Continuum Mechanical Models
Governing Equations

Governing Equations

Physical particles Continuum
e How to model fluids and solids? (~discrete mass points) (distributed mass)

e Graphics applications:

= Visual appearance
= Mostly governed by macroscopic behavior

e Typically continuum mechanical approach

e \What is Continuum Mechanics?

= Continuously distributed mass
= Object can be infinitely often divided
= Models physical phenomena as PDE

o Linear elasticity, Navier-Stokes-Equations, etc.

Continuity Equation

e Describes evolution of object's mass density over time

Dp
Dt —p(V - v)

. Dﬂt () denotes material derivative (more on the next slide)

e Important for incompressible materials
= Constraint:

Dp

Dt_O & V-v=0

e Should be explicitly fulfilled in case of incompressible materials

6

.3

Lagrangian vs. Eulerian Coordinates

i
L]
/

Lagrangian Coordinates Eulerian Coordinates
e |dentify (or label) a material of the fluid e |dentify (or label) fixed location
e Track material particle as it moves e Observe fixed location (like sensor)
e Monitor change in its properties e Monitor change in properties during flow
e Field: Al(t) e Field: AP (¢,x)
L L FE FE
DAY 9A DAP _9AF o b
Dt ot Dt ot

SPH advantageous in Lagrangian setting

Linear Momentum Conservation

e Local balance law: D?x

pD—tZZV'T_I_fext

e T denotes Stress tensor
m 2nd-order tensor [N/mA2]

e Often called: "Equation of Motion"
e |nterpretation: 3

s Generalization of Newtons 2nd law of motion for continua

e Completely material-independent

= Holds for fluids and solids (and more)
= Material behavior is encoded in stress tensor

Modelling Fluids

How does stress tensor look like for a fluid?

We need a so-called constitutive model!

= Relates stress with strain, velocity, temperature, etc.
Newtonian fluid:

= Stress as a function of pressure and velocity

T = —pl+ pu(Vv + Vv!)

First term: resistance to compression
Second term: viscosity

Equation of motion for incompressible Newtonian fluid:

I,

Dv
D —Vp + uVv + for

(Navier-Stokes equation)

6.

Modelling (Elastic) Solids

e How does stress tensor look like for an elastic solid?

e Which constitutive model now?

= We need relation between stress and deformation/strain!
e Linear Elasticity:

m Stress as a linear function of strain measure

WWWWK

T =C:¢ (Generalized Hooke's law)

e Can be interpreted as higher-dimensional spring

e In isotropic case: C=C(E,v

= Function of Young's modulus and Poisson ratio

e More complex non-linear relations possible

Numerical Solving - Recipe

1. ldentify model - Constitutive model (fluid/solid/...), strain measure, incompressible?, ...
2. Split operators for simplification (see next slide)
3. Discretize fields and spatial differential operators using SPH

4, Discretize temporal derivatives (time integration)

6

.8

Solving - Step 1/2 - Model/Operator Split.

e Step 1, Final mixed initial-boundary value, e.g., weakly compressible Newtonian fluid

PDE Incompressibility
Dv 2 Dp
pﬁ——vp+ﬂvv+fext D—tNO
Dx
—— — V
Dt

e Step 2, Operator splitting

1. Update v by solving %;’ = %V2V =+ %fext

2. Determine Vp using state equation p = k(p — po)

3. Update v by solving %‘t’ = —%Vp

Dx

4. Update x bysolving & =V

Initial conditions Boundary conditions

X(to) — L

V(t()) — Vo

v-n>0onl

6.9

Solving - Step 3 - Spatial Discretization

e Sample fields using SPH particles X, V,m
» Use reconstruction for density field Pi = Zj m; Wi;

e Discretize (spatial) differential operators V, Vz

. Dv;, __ m; 2HV2WZH 1
1. Update v; by solving 5+ = mi jp_jvz’j Hrin” - Fext

2. Determine F using state equation p; = k(p; — po)

3. Update v; by solving &% = — LF?

4. Update x; by solving %’? = V;

.10

Solving - Step 4 - Time Discretization

e Decide for time integration scheme
= Many schemes exist, e.g., Euler type, Runge-Kutta, BDF, Rosenbrock, Leapfrog, ...

e |et's use symplectic Euler

1. Update Vv; by solving v! = v; + At(m% Yo vy 2wyl 4 Fext)

7 Pj x5 m;

2. Determine Ff using state equation p; = k(pz- — ,00) Ff — Zj m; (pé | p‘%) Vz'Wij

3. Update v; by solving v;(t + At) = v} — %Ff

4.\Update x; by solving x;(t + At) = x;(t) + Atv;(t + At)

.1

Solving - Final algorithm

for all particle i do
Reconstruct density p; at x; with Eq. (11)

for all particle i do
Compute memy — mivV?v;, e.g., using Eq. (23)
V —y, A Ar (F?f]scnsny —|—F?Kt)

m; l
for all particle i do
Compute Ff R — —%V p using state eq. and Eq. (19)

for all particle] dO
Vi (f AI) At Fpreqqure
X;(1+At) = X; + Arvl (r + At)

Solving - Remaining Questions

e What about boundary handling?! v-n>0onl

o Use "HACK" for now:

m Use static fluid particles on boundary

= Pressure force will "push" them inside

e What is a "good" time step size?

= As large as possible for speed

= As small as necessary for stability/accuracy
= CFL condition as upper bound:

» Scaling heuristically chosen \ ~ 0.4

= Adapt time step during simulation

I’
(X0 009
= e
090 0009 900
900, 0000 009
Ya'al 2% e’ ==
000 0006 009
P02 2 ta il Y
000 0000 (X
Ya'a a's'a’ ‘e
000 0000 009
Ya'ala's’a’ Nt
999 0.000 099
000000000000000000000
B S B 5 o S e < e e < <
990099000990000990009.
000000000000000000000
Af <)\particle diameter

IMax; V;

&,

A

E ity s

r. '.-l"'II.
3 .'_lu":r'
H

i

.* 1

s

“ I ar o - ¥
FFE o, DS e

Neighborhood Search

Motivation

(IW(x; —x;,h)...

J
= If computed for each particle = O(n?)

e |ots of sums over particles of type Z

= Can we optimize?
e Recap:

= (Optional) Compact support kernel condition

W(r,h) =0 for ||r|| > h

e Kernel (and derivatives) vanishes outside support radius
e Assuming a particle has on average k particles in radius h

e |f we know adjacencies

—> Runtime complexity can be reduced to O(kn)

Grid-based Neighborhood Search

e How can we efficiently find "neighbors"?

« Compareall? = O(n?) EBH ®
C)
e N

e |dea: Place grid with ™ cells over domain e
= Choose cell size h

= Neighbors must lie within

o or (26) neighboring cells E%

o Same

.
o %

+ Sortparticis into grid/find neighbors > O(m) HEEBH
(
Vv

e Many cells empty! => Memory intensive

7.

[THM*03]

Spatial Hashing

e Sparse representation >

= Store only populated cells

= Use hash map: (i,j,k) -> [p1, p2, ...]

= Suitable hash function
hCLSh(i, 7 k) — [(plz) XOR (ij) XOR (ka)]

e p; := large prime numbers J

e => Much lower memory requirements

e Cache-hit rate suboptimal

= Neighboring cells are not close in memory

[IABT11]

Compact Hashing

e => Higher cache efficiency

e Only store handles to secondary data structure in 1
hash table 5 Secondary
structure
. o Y Y
= Sort cells in secondary structure =
© 1 | 2 n-1
o using space-filling z-curve 'chU z-sorted
T
2 0 1 4 5 16 17 20 21 Y Y Y Y
8| . m'1
. 2.3 6 .7 18 19 22 23 1 l
S g 9 12 13 24 25 28 28 m
;éo 11 14 15 26 27 30 31
é 32 33 36 37 48 48 52 53
é’c’ 34 35 38 39 50 51 54 55
é 4041 44 45 56 57 60 61 k k
;;L 42 43 46 47 58 58 62 63]
Cell-wise

particle indices

https://en.wikipedia.org/wiki/Z-order_curve

[IABT11]

Compact Hashing

e Useful to sort particles along Z-curve as well

= Sort expensive
= Particles move "slowly"

= Only sort every 1000th time step (or similar)

7.

Compact Hashing

e Benchmark (130k particles)

e Timesin ms

[IABT11]

[IABT11]
method construction query total
basic uniform grid 25.7 (27.5) 38.1 (105.6) 63.8 (133.1)
index sort [Gre0g&] 35.8 (38.2) 29.1 (29.9) 64.9 (77.3)
Z-1ndex sort 16.5 (20.5) 26.6 (29.7) 43.1 (50.2)
spatial hashing 41.9 (44.1) 86.0 (89.9) 127.9 (134.0)
compact hashing 8.2(9.4) 32.1(55.2) 40.3 (64.6)

Compact Hashing

[IABT11]

e (Parallel) reference implementation: https://github.com/InteractiveComputerGraphics/CompactNSearch

= supports independent point sets, activation table, z-ordering, ...

e Simple C++ implementation using STL hashmap:

00O JOo O WD K

[
(@ JN©

11
12
13

struct SpatialHasher ({
std::size t operator() (HashKey const &k) const {
return 73856093 * k.k[0] © 19349663 * k.k[1l] = 83492791 * k.k[2];
}
}i
class NeighborhoodSearch {
private:
std: :unordered map<HashKey, CellID, SpatialHasher> m map;
std::vector<ParticleIDArray> m particle ids per cell;
}i

7.

https://github.com/InteractiveComputerGraphics/CompactNSearch

Outline
Block 1 (9:00 - 10:30) Lunch break (60min) Block 3 (13:30 - 15:00)

e Multiphase fluids
e \iscosity

Foundations of SPH
Governing equations

e Vorticity and turbulence

e Demo: S lis
las

Coffee break (30min) Coffee break (30min)

Block 4 (15:30 - 17:00)

Deformable solids
Rigid body simulation

Time integration
Example: Our first SPH solver
Neighborhood Search

Block 2 (11:00 - 12:30)

e Enforcing incompressibility

= State equation solvers

= Dynamics and coupling

Data-driven/ML techniques
Summary and conclusion

= |mplicit pressure solvers
e Boundary Handling

m Particle-based methods
= |mplicit approaches

