
Smoothed Particle HydrodynamicsSmoothed Particle Hydrodynamics
Techniques for the Physics Based Simulation of Fluids and Solids

Dan
Koschier

Jan
Bender

Barbara
Solenthaler

Matthias
Teschner

Part I
Introduction, Foundations, Neighborhood Search

1

SpeakersSpeakers

Jan
Bender

Barbara
Solenthaler

Matthias
Teschner

Dan
Koschier

2 . 1

Post-doctoral Researcher at UCL
Smart Geometry Processing Group lead by Niloy Mitra

Research interests include
Physics-based simulation (deformable solids, fluids)
Modelling of interface phenomena
Cutting and fracture in solids
Machine learning enhanced simulation

One of main contributors to
Developer of supporting libraries

CompactNSearch (compact hashing-based neighborhood
search algorithm)
Discregrid (Parallel higher-order discretization on
regular/adaptive grids

Dan Koschier

2 . 2

Jan Bender
Professor at RWTH Aachen University

Head of computer animation group

Research interests include
Physics-based simulation (rigid bodies, solids, fluids, ...)
Collision handling
Cutting and Fracture
Real-time visualization

Founder and maintainer of
Open source project
C++ implementation of many! modern SPH-based
simulation techniques
Supports fluids, deformables, and coupling with rigid bodies

2 . 3

Senior Research Scientist at ETH Zürich
Head of simulation and animation group

Research interests include
Physics-based simulation
Artist-controllable techniques
Data-driven simulation

Co-founder of Apagom AG
Commercial engine
Real-time fluid simulation using MachineLearning

More than 10 years of research on SPH-related topics

Barbara Solenthaler

2 . 4

Matthias Teschner
Professor at University of Freiburg

Head of computer graphics group

Research interests include
Physics-based simulation (rigid bodies, solids, fluids, ...)
Rendering
Computational geometry
Cutting edge technology for fluid simulations in

Engineering, entertainment, art, medicine, and robotics

Co-founder of spin-off technologies
Concerned with development of commercial SPH solvers

More than 10 years of research on SPH-related topics

2 . 5

Main Goals of this Tutorial
Explain the basic concept of SPH and its features

What is SPH? For what can it be used?
What is not mentioned in papers?
What are its strengths and weaknesses?
What can be done/has been done in simulation?

Showcase
Generality and "beauty" of the concept
Potential
Wide range of applications (with examples)

Make state-of-the-art methods tractable
Methods sound often more complex than they
actually are

Motivate other researchers to "work on"/"use" SPH
3 . 1

https://s3.amazonaws.com/media-p.slid.es/videos/1037989/q8LylHm5/turb.mp4
https://s3.amazonaws.com/media-p.slid.es/videos/1037989/1jEVLzXu/visc.mp4
https://s3.amazonaws.com/media-p.slid.es/videos/1037989/A8iWKewh/bouy.mp4
https://s3.amazonaws.com/media-p.slid.es/videos/1037989/8AZ-RETC/defo.mp4

What can/can't be expected
CAN CAN'T

Practical introduction to SPH

Brief introduction fluid/solid sim.

Methods to realize physical phenomena
Modular/"as building blocks"
Videos/demos

Clarification of "urban myths"
Discussion of act. (C++) implementation
(Some) state-of-the-art approaches

concepts, current challenges,
ongoing trends

Rigorous derivation of SPH concept

Complete introduction to continuum
mechanics

Detailed discussion of results limitations of
each approach

Lecture on software architecture

3 . 2

"Urban myths"
An SPH particle represents

a physical atom/molecule
a droplet
a grain (e.g., in sand simulation)

SPH is better than Eulerian approaches
Eulerian approaches are better than SPH

"Proper" engineering CFD methods are grid-based

SPH is (only) 0th-order consistent

...

3 . 3

Outline
Block 1 (9:00 - 10:30)

Foundations of SPH
Governing equations
Time integration
Example: Our first SPH solver
Neighborhood Search

Block 2 (11:00 - 12:30)

Enforcing incompressibility
State equation solvers
Implicit pressure solvers

Boundary Handling
Particle-based methods
Implicit approaches

Block 3 (13:30 - 15:00)

Multiphase fluids
Viscosity
Vorticity and turbulence
Demo:

Block 4 (15:30 - 17:00)

Deformable solids
Rigid body simulation

Dynamics and coupling
Data-driven/ML techniques
Summary and conclusion

Coffee break (30min) Coffee break (30min)

Lunch break (60min)

4

Foundations of SPHFoundations of SPH

5 . 1

What is SPH?

Functions are discretized into
Samples equipped with kernel function

Approximates/discretizes differential operators

Interpretation of SPH sample
Math.: Coefficients "controling" approx.
Phys.: Particle "carrying" quantities

Useful to simulate continuum media
conservational properties
greatly handles topological changes
algorithms parallelize well
good for advection-type/transp. problems

A mesh-free method for the discretization of
functions and partial differential operators" "

f(x)

5 . 2

∇f
 ∂x

∂

W

W A i

SPH Discretization Pipeline
∇ × f + ∇g = h(f , g)PDE:

Field quantities/
functions

x,v, f , g, …

Continuous
approximations

Smoothing/
Kernel

convolution

x ∗ W , g ∗ W , …

Particle
discretization

Numerical
approx.

5 . 3

(Partial)
Differential
operators

∇ ∇×

Numerical
solution

Boundary
conditions +

solving

Continuous Approximation

Dirac- function

Dirac- identity

Approximation with Gaussian kernel

Good choice because normalized, BUT:

Instead use "some other" kernel:
such that

δ δ(r) = , δ(x)dv ={∞
0

if r = 0
otherwise

Rd

∫ 1

δ
A(x) = (A ∗ δ)(x) = A(x) δ(x−

Rd

∫ ′ x)dv′

N (x;μ,σ), N (x; 0,σ) =2
σ→0
lim 2 δ(x)

supp(N) = Rd

W : R ×d R →+ R

A(x) ≈ (A ∗ W)(x) Controls
variance

5 . 4

Continuous Approximation - Kernel

What's a good choice for the kernel ?

Kernel construction out of scope of this tutorial. See [LL10] for details.

A(x) ≈ (A ∗ W)(x)

W : R ×d R →+ R

Desired properties

Essential for valid approximation

(Optional) Ensures exclusively positive weighting,
helps meeting physical constraints, e.g. ρ ≥ 0
(Optional) Allows 1st-order consistent approx.

(Optional) Drastically improves efficiency.

5 . 5

Continuous Approximation - Kernel

Cubic spline kernel; typical choice for

 denotes "smoothing length"
Controls support domain radius

 normalization constant
 -continuous

Good choice? At least:

W : R ×d R →+ R

W (r,h) = σ d⎩⎪⎨
⎪⎧6(q − q) + 13 2

2(1 − q)3

0

for 0 ≤ q ≤ 2
1

for < q ≤ 12
1

otherwise

C2

with q = ∥r∥
h
1

h

σ d

Kernel fulfills all conditions!
5 . 6

Continuous Approximation - Consistency

How accurate is approximation?
Polynomial error analysis:

(A ∗ W)(x) = A(x) + ∇A ⋅ (x − x) + (x − x) ⋅ ∇∇A (x − x) + O(∥r∥) W (x−∫ [∣x
′

2
1 ′ ∣x

′ 3] x ,h)dv′ ′

= A(x) W (x−∫ x)dv +′ ′ ∇A ⋅∣x (x−∫ x)W (x−′ x)dv +′ ′ O(∥r∥)2

= 1
If kernel

normalized

= 0
If kernel

symmetric

Normalized, symmetric kernels lead to (at least) 1st-order consistency

Specialized kernels for higher-order consistency can be constructed

5 . 7

SPH Discretization Pipeline
∇ × f + ∇g = h(f , g)PDE:

Field quantities/
functions

x,v, f , g, …

Continuous
approximations

Smoothing/
Kernel

convolution

x ∗ W , g ∗ W , …

Particle
discretization

Numerical
approx.

5 . 8

(Partial)
Differential
operators

∇ ∇×

Numerical
solution

Boundary
conditions +

solving

Field Discretization

Continuous approximation (convolution) involves integral
Analytic evaluation generally not possible
Numerical integration required

Requires discretization

Monte-Carlo-like numerical integration

Each particle carries
Field sample
Particle mass
Density not necessary

(A ∗ W)(x) =i W (x −∫
ρ(x)′
A(x)′

i x ,h)

′

dm′

 ρ(x)dv′ ′

≈ A W (x −
j∈F

∑ j
ρ j

m j
i x ,h) =j : ⟨A(x)⟩i

∫ ∑
5 . 9

A i m i
ρ i

What are we sacrificing?

Polynomial error analysis:

For 1st-order consistency:

Field Discretization - Consistency

 W (x−∫
ρ(x)′
A(x)′

x ,h)dm′ ′

∫

5 . 10

∑

⟨A⟩

⟨A⟩ = A W +i

j

∑
ρ j

m j
ij ∇A ⋅∣x i

 (x −
j

∑
ρ j

m j
j x)W +i ij O(∥r∥)2

 W =
j

∑
ρ j

m j
ij 1 (x −

j

∑
ρ j

m j
j x)W =i ij 0

What are we sacrificing?

=> Particle ordering important
=> Almost never satisfied

Field Discretization - Consistency
 W =

j

∑
ρ j

m j
ij 1 (x −

j

∑
ρ j

m j
j x)W =i ij 0

For 0th-order For 1st-order

Consequence: Without further treatment we even lose 0th-order consistency
Is this a problem?

Not really! Approximation accuracy usually still high!
Alternatively: order recovery (normalization, matrix-inversion)

Common practice:
Graphics community: Often ignored. Visual quality still good.
Engineering community: Similar. Sometimes order recovery
Generally: Depends...

Polynomial error is only half of the truth! We'll see that later
5 . 11

Field Discretization - Example
Setting:

Rectangular domain discretized into
particles
Test function sampled on particles
Discretization quality is tested along red
line

Results despite concistency order

5 . 12

Mass Density Estimation
Density does not have to be carried by particles

Can be recovered/estimated

Recall

Plugging in density field directly yields:

⟨A(x)⟩ =i A W

j∈F

∑ j
ρ j

m j
ij

ρ(x) ≈i m W

j∈F

∑ j ij

5 . 13

SPH Discretization Pipeline
∇ × f + ∇g = h(f , g)PDE:

Field quantities/
functions

x,v, f , g, …

Continuous
approximations

Smoothing/
Kernel

convolution

x ∗ W , g ∗ W , …

Particle
discretization

Numerical
approx.

5 . 14

(Partial)
Differential
operators

∇ ∇×

Numerical
solution

Boundary
conditions +

solving

Discrete Differential Operators
Direct discretization:

Derivative "shifts" to kernel function

Very simple
Kernel gradient can be reused

∇A ≈i A ∇W

j

∑ j
ρ j

m j
ij

∇A ≈i A ⊗
j

∑ j
ρ j

m j ∇W ij

∇ ⋅A ≈i A ⋅
j

∑ j
ρ j

m j ∇W ij

∇ ×A ≈i − A ×
j

∑ j
ρ j

m j ∇W ij

Direct method leads to unstable simulations!!! !!!
Improved variants:

Difference formula
Symmetric formula
...

5 . 15

Difference Formula
Direct gradient

Polynomial error analysis reveals:

∇A ≈i A ∇W

j

∑ j
ρ j

m j
ij

⟨∇1⟩ = ∇W =
j

∑
ρ j

m j
ij 0 (x −

j

∑
ρ j

m j
j x)∇W =i ij I

For 0th-order For 1st-order

0th-order can be recovered by subtracting first error term:

∇A ≈i ⟨∇A ⟩ −i A ⟨∇1⟩ =i (A −
j

∑
ρ j

m j
j A)∇ W i i ij (Difference formula)

1th-order can be recovered by small matrix inversion:

∇A ≈i L (A − A)∇ W i(
j

∑
ρ j

m j
j i i ij) L =i ∇ W ⊗ (x − x)(

j

∑
ρ j

m j
i ij j i)

−1

5 . 16

Symmetric Formula
Gradient derived from discrete Lagragian and density estimate in hydrodynamic systems:

∇A ≈i ρ ⟨∇ρ⟩ + ⟨∇ ⟩(
ρ i

2
A i (

ρ i

A i))

= ρ m + ∇ W i

j

∑ j (
ρ i

2

A i

ρ j
2

A j) i ij

(Symmetric formula)

Approximation not even 0th-order consistent. BUT:
momentum conserving
error is guided by particle ordering (non-linear properties, symmetries, conservation, etc.)
=> Leads to more stable simulations (at least in the hydrodynamic setting)

Consequence:

More information: [Price 2012], Smoothed Particle Hydrodynamics and Magnetohydrodynamics
Sec. 5 "Why a bad derivative leads to good derivatives: The importance of local conservation"

Polynomial error analysis is only half the truth!

5 . 17

Discrete Laplace Operator
Direct Laplacian

Again: Rather bad approximation

Improved version by Brookshaw [Bro85]
Is of "difference type"

Even improved version not optimal for vector Laplacians
Derived forces (e.g., viscosity force) not momentum conserving
If field is divergence-free momentum conserving approximation can be made!

∇ A ≈2
i A ∇ W ∑

ρ j

m j
j i

2
ij

∇ A ≈2
i − A ∑j ρ j

m j
ij ∥r ∥ij

2∥∇ W ∥i ij

if ∇ ⋅A = 0 ⇒ ∇ A =2
i 2(d + 2) ∇ W

j

∑
ρ j

m j

∥r ∥ij
2

A ⋅ r ij ij
i ij

∇ W i ij

∇ W j ij

A ij

−A ij

5 . 18

Quick Recap
SPH discretizes

(spatial) functions
differential operators (PDEs)

An SPH particle is
a coefficient in the approximation
a sample that "carries" a field quantity

Symmetric, normalized kernels enforce at least 1st-order consistency in cont. approximation
0th-order consistency not guaranteed in particle discretiztion

Accuracy still good in practice
Local conservation properties sometimes more important than consistency orders

Specialized gradient operators
Difference-type operator for 0th/1st-order consistency
Symmetric gradient for local conservation properties (useful for physical forces)

SPH
discretization

∇ ∇×

A i

5 . 19

m i
ρ i

Continuum Mechanical ModelsContinuum Mechanical Models
Governing EquationsGoverning Equations

6 . 1

Governing Equations
How to model fluids and solids?

Graphics applications:
Visual appearance
Mostly governed by macroscopic behavior

Typically continuum mechanical approach

What is Continuum Mechanics?
Continuously distributed mass
Object can be infinitely often divided
Models physical phenomena as PDE

Linear elasticity, Navier-Stokes-Equations, etc.

Physical particles
(~discrete mass points)

Continuum
(distributed mass)

6 . 2

Continuity Equation
Describes evolution of object's mass density over time

 =
Dt

Dρ
−ρ(∇ ⋅ v)

 denotes material derivative (more on the next slide)

Important for incompressible materials
Constraint:

 (⋅)
Dt
D

 =
Dt

Dρ
0 ⇔ ∇ ⋅ v = 0

Should be explicitly fulfilled in case of incompressible materials

6 . 3

Identify (or label) a material of the fluid

Track material particle as it moves

Monitor change in its properties

Field:

Lagrangian vs. Eulerian Coordinates

Lagrangian Coordinates

Identify (or label) fixed location

Observe fixed location (like sensor)

Monitor change in properties during flow

Field:

Eulerian Coordinates

A (t,x)EA (t)p
L

 =
Dt

DAL

∂t
∂AL

 =
Dt

DAE

 +
∂t

∂AE

v ⋅ ∇ Ax
E

SPH advantageous in Lagrangian setting
6 . 4

Linear Momentum Conservation
Local balance law:

 denotes Stress tensor
2nd-order tensor [N/m^2]

Often called: "Equation of Motion"
Interpretation:

Generalization of Newtons 2nd law of motion for continua

Completely material-independent
Holds for fluids and solids (and more)
Material behavior is encoded in stress tensor

ρ =
Dt2

D x2
∇ ⋅T+ f ext

T

6 . 5

Modelling Fluids
How does stress tensor look like for a fluid?

We need a so-called constitutive model!
Relates stress with strain, velocity, temperature, etc.

Newtonian fluid:
Stress as a function of pressure and velocity

First term: resistance to compression
Second term: viscosity

Equation of motion for incompressible Newtonian fluid: ρ =
Dt

Dv
−∇p + μ∇ v +2 f ext

T = −pI+ μ(∇v + ∇v)T

(Navier-Stokes equation)

6 . 6

Modelling (Elastic) Solids
How does stress tensor look like for an elastic solid?

Which constitutive model now?
We need relation between stress and deformation/strain!

Linear Elasticity:
Stress as a linear function of strain measure

Can be interpreted as higher-dimensional spring

In isotropic case:
Function of Young's modulus and Poisson ratio

More complex non-linear relations possible

T = C : ε (Generalized Hooke's law)

C = C(E, ν)

6 . 7

Numerical Solving - Recipe

1. Identify model - Constitutive model (fluid/solid/...), strain measure, incompressible?, ...

2. Split operators for simplification (see next slide)

3. Discretize fields and spatial differential operators using SPH

4. Discretize temporal derivatives (time integration)

6 . 8

 =
Dt

Dx
v

Solving - Step 1/2 - Model/Operator Split.
Step 1, Final mixed initial-boundary value, e.g., weakly compressible Newtonian fluid

ρ =
Dt

Dv
−∇p + μ∇ v +2 f ext ≈

Dt

Dρ
0

x(t) =0 x 0

v(t) =0 v 0
v ⋅ n ≥ 0 on Γ

6 . 9

Γ

PDE Incompressibility Initial conditions Boundary conditions

Step 2, Operator splitting

1. Update by solving

2. Determine using state equation

3. Update by solving

4. Update by solving

v

v

x

∇p

 =
Dt
Dv

 ∇ v +
ρ
μ 2

 f

ρ
1

ext

 =
Dt
Dv − ∇p

ρ
1

 =
Dt
Dx v

n

x ,v 0 0

p = k(ρ − ρ)0

1. Update by solving

2. Determine using state equation

3. Update by solving

4. Update by solving

Solving - Step 3 - Spatial Discretization

Γ

Sample fields using SPH particles

Use reconstruction for density field

Discretize (spatial) differential operators

v i

v i

x i

F i
p

 =
Dt
Dv i

 v +
m i

μ ∑j ρ j

m j
ij ∥r ∥ij

2∥∇ W ∥i ij
 F

m i

1
ext

 =
Dt
Dv i − F

m i

1
i
p

 =
Dt
Dx i v i

6 . 10

n

p =i k(ρ −i ρ)0

ρ =i m W ∑j j ij

x,v,m

F =i
p

 m + ∇ W ∑j j (ρ

i
2

p i

ρ

j
2

p j) i ij

∇, ∇2

i

1. Update by solving

2. Determine using state equation

3. Update by solving

4. Update by solving

Solving - Step 4 - Time Discretization
Decide for time integration scheme

Many schemes exist, e.g., Euler type, Runge-Kutta, BDF, Rosenbrock, Leapfrog, ...

Let's use symplectic Euler

v i

v i

x i

F i
p

v =i
∗ v +i Δt(v +

m i

μ ∑j ρ j

m j
ij ∥r ∥ij

2∥∇ W ∥i ij
 F)

m i

1
ext

v (t +i Δt) = v −i
∗

 F

m i

Δt
i
p

x (t +i Δt) = x (t) +i Δtv (t +i Δt)

6 . 11

p =i k(ρ −i ρ)0 F =i
p

 m + ∇ W ∑j j (ρ

i
2

p i

ρ

j
2

p j) i ij

Solving - Final algorithm

6 . 12

Solving - Remaining Questions
Γ

n

6 . 13

i

What about boundary handling?!

Use "HACK" for now:

Use static fluid particles on boundary

Pressure force will "push" them inside

v ⋅ n ≥ 0 on Γ

What is a "good" time step size?

As large as possible for speed

As small as necessary for stability/accuracy

CFL condition as upper bound:

Scaling heuristically chosen

Adapt time step during simulation

Δt ≤ λ

max v i i

particle diameter

λ ≈ 0.4

6 . 14

Neighborhood SearchNeighborhood Search

7 . 1

Motivation
Lots of sums over particles of type

If computed for each particle

Can we optimize?

Recap:

(Optional) Compact support kernel condition

W (r,h) = 0 for ∥r∥ ≥ h̄

(⋅)W (x −∑j i x ,h) …j

7 . 2

⇒ O(n)2

h̄

Kernel (and derivatives) vanishes outside support radius

Assuming a particle has on average particles in radius

If we know adjacencies

⇒ Runtime complexity can be reduced to

h̄k

O(kn)

Grid-based Neighborhood Search
How can we efficiently find "neighbors"?

Compare all ?

Idea: Place grid with cells over domain

Choose cell size

Neighbors must lie within

same

or (26) neighboring cells

Sort particles into grid/find neighbors

Many cells empty! => Memory intensive h̄

h̄
h̄

m

⇒ O(n)2

⇒ O(m)

7 . 3

Spatial Hashing
Sparse representation

Store only populated cells

Use hash map: (i,j,k) -> [p1, p2, ...]

Suitable hash function

 large prime numbers

=> Much lower memory requirements

Cache-hit rate suboptimal

Neighboring cells are not close in memory

i

j

hash(i, j, k) = [(p i) XOR (p j) XOR (p k)]1 2 3

p =i :

[THM*03]

7 . 4

Compact Hashing
Only store handles to secondary data structure in

hash table

Sort cells in secondary structure

using space-filling z-curve

[IABT11]

1
2

m1
m

H
as
ht
ab
le

Secondary
structure

1 2 ... n1 n
zsorted

...

...

1 1 1 1

.
.

.

.
.

.

k k k k

Cellwise
particle indices

ht
tp

s:
//

en
.w

ik
ip

ed
ia

.o
rg

/w
ik

i/Z
-o

rd
er

_c
ur

ve

=> Higher cache efficiency

7 . 5

https://en.wikipedia.org/wiki/Z-order_curve

Compact Hashing
Useful to sort particles along Z-curve as well

Sort expensive

Particles move "slowly"

Only sort every 1000th time step (or similar)

[IABT11]

7 . 6

Compact Hashing [IABT11]

Benchmark (130k particles)

Times in ms
[IABT11]

7 . 7

Compact Hashing
(Parallel) reference implementation:

supports independent point sets, activation table, z-ordering, ...

Simple C++ implementation using STL hashmap:

[IABT11]

https://github.com/InteractiveComputerGraphics/CompactNSearch

struct SpatialHasher {
 std::size_t operator()(HashKey const &k) const {
 return 73856093 * k.k[0] ^ 19349663 * k.k[1] ^ 83492791 * k.k[2];
 }
};

class NeighborhoodSearch {
...
private:

 std::unordered_map<HashKey, CellID, SpatialHasher> m_map;
 std::vector<ParticleIDArray> m_particle_ids_per_cell;
};

1
2
3
4
5
6
7
8
9

10
11
12
13

7 . 8

https://github.com/InteractiveComputerGraphics/CompactNSearch

Outline
Block 1 (9:00 - 10:30)

Foundations of SPH
Governing equations
Time integration
Example: Our first SPH solver
Neighborhood Search

Block 2 (11:00 - 12:30)

Enforcing incompressibility
State equation solvers
Implicit pressure solvers

Boundary Handling
Particle-based methods
Implicit approaches

Block 3 (13:30 - 15:00)

Multiphase fluids
Viscosity
Vorticity and turbulence
Demo:

Block 4 (15:30 - 17:00)

Deformable solids
Rigid body simulation

Dynamics and coupling
Data-driven/ML techniques
Summary and conclusion

Coffee break (30min) Coffee break (30min)

Lunch break (60min)

8

